A growing body of evidence strongly indicates that both simulated and authentic weightlessness exert a broad range of effects on mammalian tissues and cells, including impairment of immune cell function and increased apoptotic death. We previously reported that microgravity-dependent activation of 5-lipoxygenase (5-LOX) might play a central role in the initiation of apoptosis in human T lymphocytes, suggesting that the upregulation of this enzyme might be (at least in part) responsible for immunodepression observed in astronauts during space flights. Herein, we supplement novel information about the molecular mechanisms underlying microgravity-triggered apoptotic cell death and immune system deregulation, demonstrating that under simulated microgravity human Jurkat T cells increase the content of cytosolic DNA fragments and cytochrome c (typical hallmarks of apoptosis) and have an upregulated expression and activity of µ-calpain. These events were paralleled by the unbalance of interleukin- (IL-) 2 and interferon- (INF-) γ, anti- and proapoptotic cytokines, respectively, that seemed to be dependent on the functional interplay between 5-LOX and µ-calpain. Indeed, we report unprecedented evidence that 5-LOX inhibition reduced apoptotic death, restored the initial IL-2/INF-γ ratio, and more importantly reverted µ-calpain activation induced by simulated microgravity.

A functional interplay between 5-lipoxygenase and μ-calpain affects survival and cytokine profile of human Jurkat T lymphocyte exposed to simulated microgravity.

Angeletti S;
2014-01-01

Abstract

A growing body of evidence strongly indicates that both simulated and authentic weightlessness exert a broad range of effects on mammalian tissues and cells, including impairment of immune cell function and increased apoptotic death. We previously reported that microgravity-dependent activation of 5-lipoxygenase (5-LOX) might play a central role in the initiation of apoptosis in human T lymphocytes, suggesting that the upregulation of this enzyme might be (at least in part) responsible for immunodepression observed in astronauts during space flights. Herein, we supplement novel information about the molecular mechanisms underlying microgravity-triggered apoptotic cell death and immune system deregulation, demonstrating that under simulated microgravity human Jurkat T cells increase the content of cytosolic DNA fragments and cytochrome c (typical hallmarks of apoptosis) and have an upregulated expression and activity of µ-calpain. These events were paralleled by the unbalance of interleukin- (IL-) 2 and interferon- (INF-) γ, anti- and proapoptotic cytokines, respectively, that seemed to be dependent on the functional interplay between 5-LOX and µ-calpain. Indeed, we report unprecedented evidence that 5-LOX inhibition reduced apoptotic death, restored the initial IL-2/INF-γ ratio, and more importantly reverted µ-calpain activation induced by simulated microgravity.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/8116
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 15
social impact