The study underscores the complex interplay between surface topography, microbial biofilm, and treatment efficacy in peri-implant disease management. While smoother surfaces may resist biofilm accumulation, increased nanoscale roughness postdecontamination can enhance fibroblast attachment and soft tissue integration. This dichotomy highlights the need for tailored treatment protocols that consider material-specific factors, emphasizing that successful implant therapy should balance microbial control with conducive surface characteristics for long-term osseointegration and soft tissue stability.
The Effects of Ultrasonic Scaling and Air-Abrasive Powders on the Topography of Implant Surfaces: Scanning Electron Analysis and In Vitro Study
Bari, MonicaInvestigation
;
In corso di stampa
Abstract
The study underscores the complex interplay between surface topography, microbial biofilm, and treatment efficacy in peri-implant disease management. While smoother surfaces may resist biofilm accumulation, increased nanoscale roughness postdecontamination can enhance fibroblast attachment and soft tissue integration. This dichotomy highlights the need for tailored treatment protocols that consider material-specific factors, emphasizing that successful implant therapy should balance microbial control with conducive surface characteristics for long-term osseointegration and soft tissue stability.File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
s-0044-1782190.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
8.26 MB
Formato
Adobe PDF
|
8.26 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.