Oxygen concentrators (OCs) are essential medical devices providing oxygen in various settings, especially low-resource settings (LRSs). Despite their adaptability and cost-effectiveness, challenges arise in such environments due to factors like dust, temperature, and humidity, leading to premature OC failure. While efforts have been made to address these issues, understanding the primary contributing factor remains unclear. This study aims to shed light on this matter through the analysis of exhausted zeolite samples from Uganda, Ethiopia, and South Africa alongside a commercial virgin sample. The samples were comprehensively characterized through powder X-ray diffraction (PXRD) analysis, wavelength dispersive X-ray fluorescence (WDXRF) elemental analysis, Brunauer–Emmett–Teller (BET) surface analysis, and thermo-gravimetric analysis (TGA) coupled with mass spectrometry (MS). The characterization results confirmed a low silicon X-type framework (FAU-LSX) for all the samples. The maximum mass loss during TGA tests occurred at 130–160 °C, suggesting that water is the main component released from the zeolites. This was confirmed by MS analysis, which revealed the predominance of water in all the sample matrices. A correlation was found between OC efficiency and the amount of water adsorbed by the zeolites, proving that humidity has a key role in causing OC malfunctioning. No evidence for the presence of dust as a contaminant in the zeolites was found by the absence of the expected chemical elements in WDXRF. Since the outcomes of the study are independent of the geographical origin of the zeolites, its findings provide general guidance for engineers to modify OCs and prevent zeolite moisture poisoning.
Understanding Oxygen Concentrator Failures in Low Resource Settings: The Role of Dust and Humidity
Leone Mazzeo;Nahimiya Husen Ibrahim;Vincenzo Piemonte;Leandro Pecchia
2025-01-01
Abstract
Oxygen concentrators (OCs) are essential medical devices providing oxygen in various settings, especially low-resource settings (LRSs). Despite their adaptability and cost-effectiveness, challenges arise in such environments due to factors like dust, temperature, and humidity, leading to premature OC failure. While efforts have been made to address these issues, understanding the primary contributing factor remains unclear. This study aims to shed light on this matter through the analysis of exhausted zeolite samples from Uganda, Ethiopia, and South Africa alongside a commercial virgin sample. The samples were comprehensively characterized through powder X-ray diffraction (PXRD) analysis, wavelength dispersive X-ray fluorescence (WDXRF) elemental analysis, Brunauer–Emmett–Teller (BET) surface analysis, and thermo-gravimetric analysis (TGA) coupled with mass spectrometry (MS). The characterization results confirmed a low silicon X-type framework (FAU-LSX) for all the samples. The maximum mass loss during TGA tests occurred at 130–160 °C, suggesting that water is the main component released from the zeolites. This was confirmed by MS analysis, which revealed the predominance of water in all the sample matrices. A correlation was found between OC efficiency and the amount of water adsorbed by the zeolites, proving that humidity has a key role in causing OC malfunctioning. No evidence for the presence of dust as a contaminant in the zeolites was found by the absence of the expected chemical elements in WDXRF. Since the outcomes of the study are independent of the geographical origin of the zeolites, its findings provide general guidance for engineers to modify OCs and prevent zeolite moisture poisoning.File | Dimensione | Formato | |
---|---|---|---|
applsci-15-04311.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
2.47 MB
Formato
Adobe PDF
|
2.47 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.