Predicting the outcome of antiretroviral therapies (ART) for HIV-1 is a pressing clinical challenge, especially when the ART includes drugs with limited effectiveness data. This scarcity of data can arise either due to the introduction of a new drug to the market or due to limited use in clinical settings, resulting in clinical dataset with highly unbalanced therapy representation. To tackle this issue, we introduce a novel joint fusion model, which combines features from a Fully Connected (FC) Neural Network and a Graph Neural Network (GNN) in a multi-modality fashion. Our model uses both tabular data about genetic sequences and a knowledge base derived from Stanford drug-resistance mutation tables, which serve as benchmark references for deducing in-vivo treatment efficacy based on the viral genetic sequence. By leveraging this knowledge base structured as a graph, the GNN component enables our model to adapt to imbalanced data distributions and account for Out-of-Distribution (OoD) drugs. We evaluated these models’ robustness against OoD drugs in the test set. Our comprehensive analysis demonstrates that the proposed model consistently outperforms the FC model. These results underscore the advantage of integrating Stanford scores in the model, thereby enhancing its generalizability and robustness, but also extending its utility in contributing in more informed clinical decisions with limited data availability. The source code is available at https://github.com/federicosiciliano/graph-ood-hiv.

A graph neural network-based model with out-of-distribution robustness for enhancing antiretroviral therapy outcome prediction for HIV-1

Guarrasi V.;
2025-01-01

Abstract

Predicting the outcome of antiretroviral therapies (ART) for HIV-1 is a pressing clinical challenge, especially when the ART includes drugs with limited effectiveness data. This scarcity of data can arise either due to the introduction of a new drug to the market or due to limited use in clinical settings, resulting in clinical dataset with highly unbalanced therapy representation. To tackle this issue, we introduce a novel joint fusion model, which combines features from a Fully Connected (FC) Neural Network and a Graph Neural Network (GNN) in a multi-modality fashion. Our model uses both tabular data about genetic sequences and a knowledge base derived from Stanford drug-resistance mutation tables, which serve as benchmark references for deducing in-vivo treatment efficacy based on the viral genetic sequence. By leveraging this knowledge base structured as a graph, the GNN component enables our model to adapt to imbalanced data distributions and account for Out-of-Distribution (OoD) drugs. We evaluated these models’ robustness against OoD drugs in the test set. Our comprehensive analysis demonstrates that the proposed model consistently outperforms the FC model. These results underscore the advantage of integrating Stanford scores in the model, thereby enhancing its generalizability and robustness, but also extending its utility in contributing in more informed clinical decisions with limited data availability. The source code is available at https://github.com/federicosiciliano/graph-ood-hiv.
2025
Graph neural network; Human immunodeficiency virus; Knowledge base; Out-of-distribution; Stanford score; Therapy prediction
File in questo prodotto:
File Dimensione Formato  
A Graph Neural Network-Based Model With Out-Of-Distribution Robustness For Enhancing Antiretroviral Therapy Outcome Prediction For Hiv-1 - 2025.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 2.21 MB
Formato Adobe PDF
2.21 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/88584
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact