Background. Postoperative pancreatic fistula (POPF) remains one of the most relevant complications following pancreaticoduodenectomy (PD), significantly impacting short-term outcomes and delaying adjuvant therapies. Current predictive models offer limited accuracy, often failing to incorporate early postoperative data. This retrospective study aimed to develop and validate machine learning (ML) models to predict the absence and severity of POPF using clinical, surgical, and early postoperative variables. Methods. Data from 216 patients undergoing PD were analyzed. A total of twenty-four machine learning (ML) algorithms were systematically evaluated using the Matthews Correlation Coefficient (MCC) and AUC-ROC metrics. Among these, the GradientBoostingClassifier consistently outperformed all other models, demonstrating the best predictive performance, particularly in identifying patients at low risk of postoperative pancreatic fistula (POPF) during the early postoperative period. To enhance transparency and interpretability, a SHAP (SHapley Additive exPlanations) analysis was applied, highlighting the key role of early postoperative biomarkers in the model predictions. Results. The performance of the GradientBoostingClassifier was also directly compared to that of a traditional logistic regression model, confirming the superior predictive performance over conventional approaches. This study demonstrates that ML can effectively stratify POPF risk, potentially supporting early drain removal and optimizing postoperative management. Conclusions. While the model showed promising performance in a single-center cohort, external validation across different surgical settings will be essential to confirm its generalizability and clinical utility. The integration of ML into clinical workflows may represent a step forward in delivering personalized and dynamic care after pancreatic surgery.
Machine Learning for Predicting the Low Risk of Postoperative Pancreatic Fistula After Pancreaticoduodenectomy: Toward a Dynamic and Personalized Postoperative Management Strategy
Angeletti S.;Coppola R.;Soda P.;Guarrasi V.;Caputo D.
2025-01-01
Abstract
Background. Postoperative pancreatic fistula (POPF) remains one of the most relevant complications following pancreaticoduodenectomy (PD), significantly impacting short-term outcomes and delaying adjuvant therapies. Current predictive models offer limited accuracy, often failing to incorporate early postoperative data. This retrospective study aimed to develop and validate machine learning (ML) models to predict the absence and severity of POPF using clinical, surgical, and early postoperative variables. Methods. Data from 216 patients undergoing PD were analyzed. A total of twenty-four machine learning (ML) algorithms were systematically evaluated using the Matthews Correlation Coefficient (MCC) and AUC-ROC metrics. Among these, the GradientBoostingClassifier consistently outperformed all other models, demonstrating the best predictive performance, particularly in identifying patients at low risk of postoperative pancreatic fistula (POPF) during the early postoperative period. To enhance transparency and interpretability, a SHAP (SHapley Additive exPlanations) analysis was applied, highlighting the key role of early postoperative biomarkers in the model predictions. Results. The performance of the GradientBoostingClassifier was also directly compared to that of a traditional logistic regression model, confirming the superior predictive performance over conventional approaches. This study demonstrates that ML can effectively stratify POPF risk, potentially supporting early drain removal and optimizing postoperative management. Conclusions. While the model showed promising performance in a single-center cohort, external validation across different surgical settings will be essential to confirm its generalizability and clinical utility. The integration of ML into clinical workflows may represent a step forward in delivering personalized and dynamic care after pancreatic surgery.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.