Computational modeling plays an important role in biology and medicine to assess the effects of hemodynamic alterations in the onset and development of vascular pathologies. Synthetic analytic indices are of primary importance for a reliable and effective a priori identification of the risk. In this scenario, we propose a multiscale fluid-structure interaction (FSI) modeling approach of hemodynamic flows, extending the recently introduced three-band decomposition (TBD) analysis for moving domains. A quantitative comparison is performed with respect to the most common hemodynamic risk indicators in a systematic manner. We demonstrate the reliability of the TBD methodology also for deformable domains by assuming a hyperelastic formulation of the arterial wall and a Newtonian approximation of the blood flow. Numerical simulations are performed for physiologic and pathologic axially symmetric geometry models with particular attention to abdominal aortic aneurysms (AAAs). Risk assessment, limitations and perspectives are finally discussed.Read More: http://www.worldscientific.com/doi/10.1142/S0129183116500170
Three-band decomposition analysis in multiscale FSI models of abdominal aortic aneurysms
Gizzi A;Cherubini C;Filippi S
2016-01-01
Abstract
Computational modeling plays an important role in biology and medicine to assess the effects of hemodynamic alterations in the onset and development of vascular pathologies. Synthetic analytic indices are of primary importance for a reliable and effective a priori identification of the risk. In this scenario, we propose a multiscale fluid-structure interaction (FSI) modeling approach of hemodynamic flows, extending the recently introduced three-band decomposition (TBD) analysis for moving domains. A quantitative comparison is performed with respect to the most common hemodynamic risk indicators in a systematic manner. We demonstrate the reliability of the TBD methodology also for deformable domains by assuming a hyperelastic formulation of the arterial wall and a Newtonian approximation of the blood flow. Numerical simulations are performed for physiologic and pathologic axially symmetric geometry models with particular attention to abdominal aortic aneurysms (AAAs). Risk assessment, limitations and perspectives are finally discussed.Read More: http://www.worldscientific.com/doi/10.1142/S0129183116500170I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.