Invasive fungal infections (IFIs) represent a growing global health threat, particularly for immunocompromised populations, with mortality exceeding 1.5 million deaths annually. Despite their clinical and economic burden—costing billions in healthcare expenditures—fungal infections remain underprioritized in public health agendas. This review examines the current landscape of antifungal therapy, focusing on advances, challenges, and future directions. Key drug classes (polyenes, azoles, echinocandins, and novel agents) are analyzed for their mechanisms of action, pharmacokinetics, and clinical applications, alongside emerging resistance patterns in pathogens like Candida auris and azole-resistant Aspergillus fumigatus. The rise of resistance, driven by agricultural fungicide use and nosocomial transmission, underscores the need for innovative antifungals, rapid diagnostics, and stewardship programs. Promising developments include next-generation echinocandins (e.g., rezafungin), triterpenoids (ibrexafungerp), and orotomides (olorofim), which target resistant strains and offer improved safety profiles. The review also highlights the critical role of “One Health” strategies to mitigate environmental and clinical resistance. Future success hinges on multidisciplinary collaboration, enhanced surveillance, and accelerated drug development to address unmet needs in antifungal therapy.
Antifungal Agents in the 21st Century: Advances, Challenges, and Future Perspectives
Branda, Francesco
;Giovanetti, Marta;Ciccozzi, Massimo
2025-01-01
Abstract
Invasive fungal infections (IFIs) represent a growing global health threat, particularly for immunocompromised populations, with mortality exceeding 1.5 million deaths annually. Despite their clinical and economic burden—costing billions in healthcare expenditures—fungal infections remain underprioritized in public health agendas. This review examines the current landscape of antifungal therapy, focusing on advances, challenges, and future directions. Key drug classes (polyenes, azoles, echinocandins, and novel agents) are analyzed for their mechanisms of action, pharmacokinetics, and clinical applications, alongside emerging resistance patterns in pathogens like Candida auris and azole-resistant Aspergillus fumigatus. The rise of resistance, driven by agricultural fungicide use and nosocomial transmission, underscores the need for innovative antifungals, rapid diagnostics, and stewardship programs. Promising developments include next-generation echinocandins (e.g., rezafungin), triterpenoids (ibrexafungerp), and orotomides (olorofim), which target resistant strains and offer improved safety profiles. The review also highlights the critical role of “One Health” strategies to mitigate environmental and clinical resistance. Future success hinges on multidisciplinary collaboration, enhanced surveillance, and accelerated drug development to address unmet needs in antifungal therapy.File | Dimensione | Formato | |
---|---|---|---|
idr-17-00091.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.16 MB
Formato
Adobe PDF
|
1.16 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.