This work offers a critical and evidence-based synthesis of the conceptual, methodological, and social implications of artificial intelligence (AI) in scientific research, significantly enriched by an informetric perspective. The analysis transcends descriptive overviews and simple cataloging of products, providing a deeper understanding of the opportunities AI presents, such as accelerated data analysis, hypothesis generation, and drug discovery. At the same time, crucial challenges that AI introduces are explored, including knowledge monocultures, algorithmic bias, reproducibility issues, and the impact on research integrity and evaluation. The original contribution of this paper lies in the integration of informetric analysis to quantify the influence of AI on the production and dissemination of scientific knowledge, highlighting both its potential as an analytical tool and the risk of bias in the academic record. The paper emphasizes the need for frameworks that harmonize technological capabilities with the irreplaceable ingenuity of human thought, promoting balanced collaboration between AI and researchers, where AI serves as a tool to increase productivity and human oversight ensures ethical rigor, critical evaluation, and creative exploration.
Artificial intelligence in scientific research: Challenges, opportunities and the imperative of a human-centric synergy
Branda, Francesco
;Ciccozzi, Massimo;
2025-01-01
Abstract
This work offers a critical and evidence-based synthesis of the conceptual, methodological, and social implications of artificial intelligence (AI) in scientific research, significantly enriched by an informetric perspective. The analysis transcends descriptive overviews and simple cataloging of products, providing a deeper understanding of the opportunities AI presents, such as accelerated data analysis, hypothesis generation, and drug discovery. At the same time, crucial challenges that AI introduces are explored, including knowledge monocultures, algorithmic bias, reproducibility issues, and the impact on research integrity and evaluation. The original contribution of this paper lies in the integration of informetric analysis to quantify the influence of AI on the production and dissemination of scientific knowledge, highlighting both its potential as an analytical tool and the risk of bias in the academic record. The paper emphasizes the need for frameworks that harmonize technological capabilities with the irreplaceable ingenuity of human thought, promoting balanced collaboration between AI and researchers, where AI serves as a tool to increase productivity and human oversight ensures ethical rigor, critical evaluation, and creative exploration.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S1751157725000896-main.pdf
non disponibili
Tipologia:
Versione Editoriale (PDF)
Licenza:
Copyright dell'editore
Dimensione
437.89 kB
Formato
Adobe PDF
|
437.89 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.