Highlights: What are the main findings? Time-domain heart rate variability parameters are significantly correlated with spatiotemporal gait features in Parkinson’s disease. The Stress Index, a measure of sympathetic activity, is associated with poorer gait performance and reduced cognitive function. What is the implication of the main finding? Measures derived by heart rate variability may serve as non-invasive biomarkers for the evaluation of functional mobility and cognition in Parkinson’s disease. Heart rate variability and autonomic functions should be targets for future clinical trials evaluating motor performances. Autonomic dysfunction is a key non-motor feature of Parkinson’s disease (PD) and may influence motor performance, particularly gait. While heart rate variability (HRV) has been associated with freezing of gait, its relationship with broader gait parameters remains unclear. The objective was to investigate correlations between resting-state HRV time-domain measures and spatiotemporal gait parameters during comfortable and fast walking in patients with idiopathic PD. Twenty-eight PD patients (mean age 68 ± 9 years) were evaluated at Campus Bio-Medico University Hospital. HRV was recorded at rest using the e-Sense pule™ portable sensor, including the Baevsky’s Stress Index a measure increasing with sympathetic burden. Gait parameters were assessed via the 10 m Timed Up and Go (TUG) test using the Mon4t™ smartphone app at comfortable and fast pace. Clinical data included UPDRS III, MoCA, and disease characteristics. Gait metrics significantly changed between walking conditions. HRV parameters clustered separately from gait metrics but intersected with significant correlations. Higher Stress Index values, reflecting sympathetic dominance, were associated with poorer gait performance, including prolonged transition times, shorter steps, and increased variability (p < 0.001, r = 0.57–0.61). MoCA scores inversely correlated with the Stress Index (r = −0.52, p = 0.004), linking cognitive and autonomic status. UPDRS III and MoCA were related to TUG metrics but not HRV. Time-domain HRV measures, particularly the Stress Index, are significantly associated with spatiotemporal gait features in PD, independent of gait speed. These findings suggest that impaired autonomic regulation contributes to functional mobility deficits in PD and supports the role of HRV as a biomarker in motor assessment.
Sympathetic Burden Measured Through a Chest-Worn Sensor Correlates with Spatiotemporal Gait Performances and Global Cognition in Parkinson's Disease
Vivacqua, Giorgio;Di Lazzaro, Vincenzo;
2025-01-01
Abstract
Highlights: What are the main findings? Time-domain heart rate variability parameters are significantly correlated with spatiotemporal gait features in Parkinson’s disease. The Stress Index, a measure of sympathetic activity, is associated with poorer gait performance and reduced cognitive function. What is the implication of the main finding? Measures derived by heart rate variability may serve as non-invasive biomarkers for the evaluation of functional mobility and cognition in Parkinson’s disease. Heart rate variability and autonomic functions should be targets for future clinical trials evaluating motor performances. Autonomic dysfunction is a key non-motor feature of Parkinson’s disease (PD) and may influence motor performance, particularly gait. While heart rate variability (HRV) has been associated with freezing of gait, its relationship with broader gait parameters remains unclear. The objective was to investigate correlations between resting-state HRV time-domain measures and spatiotemporal gait parameters during comfortable and fast walking in patients with idiopathic PD. Twenty-eight PD patients (mean age 68 ± 9 years) were evaluated at Campus Bio-Medico University Hospital. HRV was recorded at rest using the e-Sense pule™ portable sensor, including the Baevsky’s Stress Index a measure increasing with sympathetic burden. Gait parameters were assessed via the 10 m Timed Up and Go (TUG) test using the Mon4t™ smartphone app at comfortable and fast pace. Clinical data included UPDRS III, MoCA, and disease characteristics. Gait metrics significantly changed between walking conditions. HRV parameters clustered separately from gait metrics but intersected with significant correlations. Higher Stress Index values, reflecting sympathetic dominance, were associated with poorer gait performance, including prolonged transition times, shorter steps, and increased variability (p < 0.001, r = 0.57–0.61). MoCA scores inversely correlated with the Stress Index (r = −0.52, p = 0.004), linking cognitive and autonomic status. UPDRS III and MoCA were related to TUG metrics but not HRV. Time-domain HRV measures, particularly the Stress Index, are significantly associated with spatiotemporal gait features in PD, independent of gait speed. These findings suggest that impaired autonomic regulation contributes to functional mobility deficits in PD and supports the role of HRV as a biomarker in motor assessment.File | Dimensione | Formato | |
---|---|---|---|
sensors-25-05756.pdf
accesso aperto
Tipologia:
Versione Editoriale (PDF)
Licenza:
Creative commons
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.