Ebola virus Zaire (EBOV) has reemerged in Africa, emphasizing the global importance of this pathogen. Amidst the response to the current epidemic, several gaps in our knowledge of EBOV evolution are evident. Specifically, uncertainty has been raised regarding the potential emergence of more virulent viral variants through amino acid substitutions. Glycoprotein (GP), an essential component of the EBOV genome, is highly variable and a potential site for the occurrence of advantageous mutations. For this study, we reconstructed the evolutionary history of EBOV by analyzing 65 GP sequences from humans and great apes over diverse locations across epidemic waves between 1976 and 2014. We show that, although patterns of spatial dispersion throughout Africa varied, the evolution of the virus has largely been characterized by neutral genetic drift. Therefore, the radical emergence of more transmissible variants is unlikely, a positive finding, which is increasingly important on the verge of vaccine deployment.

Impact of spatial dispersion, evolution and selection on Ebola Zaire Virus epidemic waves

Giovanetti, Marta;Ciccozzi, Massimo;
2015-01-01

Abstract

Ebola virus Zaire (EBOV) has reemerged in Africa, emphasizing the global importance of this pathogen. Amidst the response to the current epidemic, several gaps in our knowledge of EBOV evolution are evident. Specifically, uncertainty has been raised regarding the potential emergence of more virulent viral variants through amino acid substitutions. Glycoprotein (GP), an essential component of the EBOV genome, is highly variable and a potential site for the occurrence of advantageous mutations. For this study, we reconstructed the evolutionary history of EBOV by analyzing 65 GP sequences from humans and great apes over diverse locations across epidemic waves between 1976 and 2014. We show that, although patterns of spatial dispersion throughout Africa varied, the evolution of the virus has largely been characterized by neutral genetic drift. Therefore, the radical emergence of more transmissible variants is unlikely, a positive finding, which is increasingly important on the verge of vaccine deployment.
2015
Africa; Ebolavirus; Evolution, Molecular; Glycoproteins; Hemorrhagic Fever, Ebola; Phylogeography; Viral Fusion Proteins
File in questo prodotto:
File Dimensione Formato  
102.srep10170.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 878.21 kB
Formato Adobe PDF
878.21 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/91031
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? 20
social impact