Cytochrome C is a key protein involved in electron transport within the mitochondrial respiratory chain and in apoptosis mechanisms. In this work, we provide a detailed theoretical analysis of the binding mechanism between cytochrome-C and a cardiolipin-containing membrane. Molecular dynamics simulations, along with protein contact network and fractal dimension analyses were employed to investigate the structural changes in cytochrome-C during the binding process. Our results suggest that cytochrome-C follows a two-step binding mechanism, starting with a rapid initial interaction, followed by slower conformational rearrangements. We identified two different cytochrome-C conformations at the membrane: a compact, native-like structure and an extended form. The latter, stabilized by Lys72, exhibits a higher binding affinity (≈ 2 kcal/mol) compared to the former. Protein extension also correlates with increased protein-membrane contact and altered heme ring orientation, suggesting that the partial unfolding of cytochrome-C could be crucial for its peroxidase activity and its role in apoptosis. These findings enhance the understanding of the cytochrome-C’s membrane interactions and its diverse functions.

In silico study of cytochrome-C binding to a cardiolipin-containing membrane

Di Paola, Luisa
Methodology
;
2025-01-01

Abstract

Cytochrome C is a key protein involved in electron transport within the mitochondrial respiratory chain and in apoptosis mechanisms. In this work, we provide a detailed theoretical analysis of the binding mechanism between cytochrome-C and a cardiolipin-containing membrane. Molecular dynamics simulations, along with protein contact network and fractal dimension analyses were employed to investigate the structural changes in cytochrome-C during the binding process. Our results suggest that cytochrome-C follows a two-step binding mechanism, starting with a rapid initial interaction, followed by slower conformational rearrangements. We identified two different cytochrome-C conformations at the membrane: a compact, native-like structure and an extended form. The latter, stabilized by Lys72, exhibits a higher binding affinity (≈ 2 kcal/mol) compared to the former. Protein extension also correlates with increased protein-membrane contact and altered heme ring orientation, suggesting that the partial unfolding of cytochrome-C could be crucial for its peroxidase activity and its role in apoptosis. These findings enhance the understanding of the cytochrome-C’s membrane interactions and its diverse functions.
2025
Cytochrome C; Fractal dimension; Membrane binding; Protein conformational dynamics; Superficial roughness
File in questo prodotto:
File Dimensione Formato  
s00249-025-01783-7.pdf

accesso aperto

Licenza: Creative commons
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/91143
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact