We prove well-posedness of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, where the singular part of the initial data is a finite superposition of Dirac masses and the flux is a continuous function with possible linear growth at infinity. The uniqueness class consists of signed Radon measure-valued entropy solutions, called admissible, whose regular and singular parts satisfy so-called compatibility conditions and suitable continuity requirements with respect to time.

Measure-valued solutions of scalar hyperbolic conservation laws, Part 2: Uniqueness

Smarrazzo F.;
2025-01-01

Abstract

We prove well-posedness of the Cauchy problem for a first order scalar hyperbolic conservation law in one space dimension, where the singular part of the initial data is a finite superposition of Dirac masses and the flux is a continuous function with possible linear growth at infinity. The uniqueness class consists of signed Radon measure-valued entropy solutions, called admissible, whose regular and singular parts satisfy so-called compatibility conditions and suitable continuity requirements with respect to time.
2025
First order hyperbolic conservation laws; Radon measure-valued entropy solutions; Continuity properties; Compatibility conditions
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/91463
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact