Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging. However, GAN-based denoising algorithms still suffer from limitations in capturing complex relationships within the images. In this regard, the loss function plays a crucial role in guiding the image generation process, encompassing how much a synthetic image differs from a real image. To grasp highly complex and non-linear textural relationships in the training process, this work presents a novel approach to capture and embed multi-scale texture information into the loss function. Our method introduces a differentiable multi-scale texture representation of the images dynamically aggregated by a self-attention layer, thus exploiting end-to-end gradient-based optimization. We validate our approach by carrying out extensive experiments in the context of low-dose CT denoising, a challenging application that aims to enhance the quality of noisy CT scans. We utilize three publicly available datasets, including one simulated and two real datasets. The results are promising as compared to other well-established loss functions, being also consistent across three different GAN architectures. The code is available at:https://github.com/trainlab/MSTLF-TextureLoss.

Multi-scale texture loss for CT denoising with GANs

Tronchin, Lorenzo;Guarrasi, Valerio;Soda, Paolo
2025-01-01

Abstract

Generative Adversarial Networks (GANs) have proved as a powerful framework for denoising applications in medical imaging. However, GAN-based denoising algorithms still suffer from limitations in capturing complex relationships within the images. In this regard, the loss function plays a crucial role in guiding the image generation process, encompassing how much a synthetic image differs from a real image. To grasp highly complex and non-linear textural relationships in the training process, this work presents a novel approach to capture and embed multi-scale texture information into the loss function. Our method introduces a differentiable multi-scale texture representation of the images dynamically aggregated by a self-attention layer, thus exploiting end-to-end gradient-based optimization. We validate our approach by carrying out extensive experiments in the context of low-dose CT denoising, a challenging application that aims to enhance the quality of noisy CT scans. We utilize three publicly available datasets, including one simulated and two real datasets. The results are promising as compared to other well-established loss functions, being also consistent across three different GAN architectures. The code is available at:https://github.com/trainlab/MSTLF-TextureLoss.
2025
Deep learning; Generative Adversarial Networks; Image synthesis; Image translation; Low-dose CT (LDCT); Noise reduction
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/91485
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact