Atherosclerosis is a leading cardiovascular disease typified by fatty streaks accumulating within arterial walls, culminating in potential plaque ruptures and subsequent strokes. Existing clinical risk scores, such as systematic coronary risk estimation and Framingham risk score, profile cardiovascular risks based on factors like age, cholesterol, and smoking, among others. However, these scores display limited sensitivity in early disease detection. Parallelly, ultrasound-based risk markers, such as the carotid intima media thickness, while informative, only offer limited predictive power. Notably, current models largely focus on either ultrasound image-derived risk markers or clinical risk factor data without combining both for a comprehensive, multimodal assessment. This study introduces a multimodal ensemble learning framework to assess atherosclerosis severity, especially in its early sub-clinical stage. We utilize a multi-objective optimization targeting both performance and diversity, aiming to integrate features from each modality effectively. Our objective is to measure the efficacy of models using multimodal data in assessing vascular aging, i.e., plaque presence and vascular age, over a six-year period. We also delineate a procedure for optimal model selection from a vast pool, focusing on best-suited models for classification tasks. Additionally, through eXplainable Artificial Intelligence techniques, this work delves into understanding key model contributors and discerning unique subject subgroups.

Beyond unimodal analysis: Multimodal ensemble learning for enhanced assessment of atherosclerotic disease progression

Guarrasi, Valerio;Soda, Paolo;
2025-01-01

Abstract

Atherosclerosis is a leading cardiovascular disease typified by fatty streaks accumulating within arterial walls, culminating in potential plaque ruptures and subsequent strokes. Existing clinical risk scores, such as systematic coronary risk estimation and Framingham risk score, profile cardiovascular risks based on factors like age, cholesterol, and smoking, among others. However, these scores display limited sensitivity in early disease detection. Parallelly, ultrasound-based risk markers, such as the carotid intima media thickness, while informative, only offer limited predictive power. Notably, current models largely focus on either ultrasound image-derived risk markers or clinical risk factor data without combining both for a comprehensive, multimodal assessment. This study introduces a multimodal ensemble learning framework to assess atherosclerosis severity, especially in its early sub-clinical stage. We utilize a multi-objective optimization targeting both performance and diversity, aiming to integrate features from each modality effectively. Our objective is to measure the efficacy of models using multimodal data in assessing vascular aging, i.e., plaque presence and vascular age, over a six-year period. We also delineate a procedure for optimal model selection from a vast pool, focusing on best-suited models for classification tasks. Additionally, through eXplainable Artificial Intelligence techniques, this work delves into understanding key model contributors and discerning unique subject subgroups.
2025
Atherosclerosis; Cardiovascular disease; Clinical risk scores; Plaque prediction; Ultrasound imaging; Vascular age prediction; XAI
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0895611125001260-main.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 3.35 MB
Formato Adobe PDF
3.35 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/91487
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact