A new approach to the deconvolution and filtering of 3-D microscopy images is introduced in this paper. A state-space representation of the image is derived according to the assumption that the whole image can be modelled by an ensemble of smooth 3-D Gaussian random fields. Blurring and noise are then easily included in the representation. Making use of this model the image restoration is carried out by means of a Kalman-based minimum variance estimation algorithm. The reported simulation results show high performances of the proposed approach.

White Noise Solution for Nonlinear Stochastic Systems

CACACE, F.;CONTE, F.;
2016-01-01

Abstract

A new approach to the deconvolution and filtering of 3-D microscopy images is introduced in this paper. A state-space representation of the image is derived according to the assumption that the whole image can be modelled by an ensemble of smooth 3-D Gaussian random fields. Blurring and noise are then easily included in the representation. Making use of this model the image restoration is carried out by means of a Kalman-based minimum variance estimation algorithm. The reported simulation results show high performances of the proposed approach.
2016
Image modelling, deconvolution, image restoration, optimal filtering
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/16311
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact