We consider a cooperative filtering problem for a group of linear stochastic systems when both absolute linear measurements and relative nonlinear measurements are available. By extending the state of each system with the quadratic part we are able to derive a cooperative filter in the space of the quadratic recursively computable functions of the measurements. The exact value of the variance of the estimation error for each system can be explicitly computed.

Cooperative Filtering with Absolute and Relative Measurements

CACACE F;
2018-01-01

Abstract

We consider a cooperative filtering problem for a group of linear stochastic systems when both absolute linear measurements and relative nonlinear measurements are available. By extending the state of each system with the quadratic part we are able to derive a cooperative filter in the space of the quadratic recursively computable functions of the measurements. The exact value of the variance of the estimation error for each system can be explicitly computed.
File in questo prodotto:
File Dimensione Formato  
DistributedAbsRelKF_R1.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 328.66 kB
Formato Adobe PDF
328.66 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/16354
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 15
  • ???jsp.display-item.citation.isi??? 13
social impact