This paper presents the design and calibration of an ISO non-compliant orifice plate flowmeter whose intended use is for respiratory function measurements in the bidirectional air flow range ±9 L/min.The novelty of the proposed sensor consists of a plate beveled in both upstream and downstream sides: a symmetrical geometry is adopted in order to perform bidirectional measurements of flow rate. A mathematical model is introduced to quantify the influence of temperature on the sensor output. Four different positions of the pressure static taps are evaluated in order to maximize bidirectionality. An index is also introduced in order to quantitatively estimate the anti-symmetry of the sensor's response curve.Trials are carried out to evaluate the influence on sensor output of air temperatures (22 °C, 30 °C and 37 °C) at different values of relative humidity (5%, 55% and 85%). Experimental data show a quite good agreement with the theoretical model (R2>0.98 in each condition).The influence of air temperature on the sensor output is minimized by introducing a correction factor based on the theoretical model leading to measurement repeatability better than 2% in overall range of calibration. The mean sensitivity in the calibration range is about 2 kPa L−1·min allowing to obtain a sensor discrimination threshold lower than 0.2 L/min in both directions. The time constant of the whole measurement system, equal to 2.40±0.03 ms, leads to a bandwidth up to 80 Hz making the sensor suitable for respiratory function measurements.

An orifice meter for bidirectional air flow measurements: Influence of gas thermo-hygrometric content on static response and bidirectionality

SCHENA E;SILVESTRI S
2013-01-01

Abstract

This paper presents the design and calibration of an ISO non-compliant orifice plate flowmeter whose intended use is for respiratory function measurements in the bidirectional air flow range ±9 L/min.The novelty of the proposed sensor consists of a plate beveled in both upstream and downstream sides: a symmetrical geometry is adopted in order to perform bidirectional measurements of flow rate. A mathematical model is introduced to quantify the influence of temperature on the sensor output. Four different positions of the pressure static taps are evaluated in order to maximize bidirectionality. An index is also introduced in order to quantitatively estimate the anti-symmetry of the sensor's response curve.Trials are carried out to evaluate the influence on sensor output of air temperatures (22 °C, 30 °C and 37 °C) at different values of relative humidity (5%, 55% and 85%). Experimental data show a quite good agreement with the theoretical model (R2>0.98 in each condition).The influence of air temperature on the sensor output is minimized by introducing a correction factor based on the theoretical model leading to measurement repeatability better than 2% in overall range of calibration. The mean sensitivity in the calibration range is about 2 kPa L−1·min allowing to obtain a sensor discrimination threshold lower than 0.2 L/min in both directions. The time constant of the whole measurement system, equal to 2.40±0.03 ms, leads to a bandwidth up to 80 Hz making the sensor suitable for respiratory function measurements.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/6364
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 17
  • ???jsp.display-item.citation.isi??? 17
social impact