I) High-field Magnetic Resonance Imaging of the dental apparatus Introduction: in clinical practice, imaging of dental apparatus diseases is generally performed by means of traditional radiology (orthopantomography or intraoral radiography) (RX), MDCT (multi-detector CT) or CBCT (cone-bean CT). However, these techniques are limited in the study of soft tissues, such as the periodontal space, the gum, the dental pulp, allowing only late diagnosis of the pathologies of these tissues and the identification of tissue repair phenomena following therapy. Magnetic resonance imaging (MRI) could represent, thanks to its excellent visualization of soft tissues, a possible alternative or in any case a useful means of diagnostic completion in patients affected by alterations of these tissues. Some scientific works have in fact highlighted the potential role of MRI in detecting tissue repair phenomena much earlier after therapy or being useful in guiding the therapeutic process in such pathologies, allowing to select those patients with a greater probability of recovery. functional or tissue regeneration in response to different therapies. Particularly interesting for its clinical and therapeutic implications, MRI would result in: - Patients with periodontal lesions: periodontal pathology is one of the most common chronic inflammations in man. It is an inflammatory process that generally affects the gum initially, and then extends into the periodontal space, causing resorption of the alveolar bone and the formation of so-called "root pockets". An important diagnostic and therapeutic problem arises in patients with periodontal lesions, in which the inflammation is extended both in the periodontal space and inside the dental roots; clinically it is not possible to distinguish whether the focus was primarily endodontal or periodontal. In clinical practice, endocanal therapy is carried out evaluating its effectiveness on the basis of the regeneration of the alveolar bone, which can be identified in x-rays 5-6 months after treatment, according to the age of the patient. It is preferable to start with endodontic therapy, because periodontal courettage, in eliminating the inflammatory material, would also destroy many cellular elements with regeneration potential (fibroblasts); the courettage is then proceeded to in those "non-responders" patients, obviously being the periodontal focus. Since MRI is very sensitive in identifying edematous / inflammatory phenomena of soft tissues (hyperintensity of T2 signal and enhancement after administration of paramagnetic contrast medium), it could show more precociously reparative phenomena at the periodontal level following endocanal therapy . On the one hand, it would be possible to identify first the "non-responder" patients, who could be subjected earlier and therefore more likely to be successful in periodontal treatment, on the other hand the "responder" patients, in whom courettage must be absolutely avoided. Obviously it would be optimal if the MRI could distinguish from the beginning whether the focus is dental or periodontal. - Patients with periapical lytic bone lesions: granulomas and periapical cysts cannot be distinguished in radiographic or CT techniques, both appearing as lytic lesions of the alveolar bone, well circumscribed, near the root apex. The differential diagnosis is important, because in the first case the therapy is endodontic, while in the second case it is necessary to proceed with the resection of the root. Also in this case we proceed ex adjuvantibus, observing the response to endocanal therapy. MRI could potentially lead to one of these two pathological entities on the basis of signal intensity in T1 and T2 and behavior after administration of contrast medium, allowing to select those patients with a greater probability of restitutio ad integrum of the alveolar bone with endocanal therapy. - Patients with a history of recent dental trauma or autologous dental transplantation: in clinical practice it is difficult to estimate the functional recovery potential of a traumatized or transplanted dental element, depending on the vascularization or revascularization of the root. In general, an observational attitude is preferred, however, in the event of non-perfusion, there is the risk of ankylosis or root resorption and therefore infection. Going to evaluate, based on the strengthening after the administration of iv contrast medium, the spraying of the roots of the traumatized or transplanted tooth, MRI could allow the selection of those patients with a greater probability of functional recovery. The aim of our study is therefore to evaluate the applicability of MRI in dental imaging, to compare the images with MDCT and CBCT methods and to evaluate their effective advantages in dental imaging. Preliminary experimental studies on an animal model. Initially, preliminary experimental studies were carried out on porcine jaw preparations (n = 4) both for the optimization of dedicated sequences and to evaluate the effective ability of MRI to visualize the different anatomical structures of the dental apparatus [1] and to compare image quality with MDCT and CBCT acquisitions [2]. Materials and methods. In order to obtain an objective measure of the image quality of MR, MDCT and CBCT in the different mandibular preparations, circular defects of defined dimensions (diameter 0.22-0.28cm; depth 0.5-1cm) were created with a dental drill and filled with 1% gluconate chlorhexidine gel. MR imaging was performed with a high-field machine (3T, Tim Trio, Siemens, Erlangen, Germany) using an 8-channel surface coil (Multifunction coil-CPC, NORAS, Höchberg, Germany). A 3D-T2-TSE sequence (TR / TE 750/123; SL 0.6mm; DF 50%; FOV 120mm) and a T1-SE sequence (TR / TE 680/13; SL 2mm; DF were then developed) 0%; FOV 105mm) with high spatial resolution (voxel 0.2 x 0.2 x 0.6 mm in the T2-weighted sequence and 0.2 x 0.2 x 2 mm in the T1-weighted sequence) and optimization of tissue contrast, both oriented transversely. MDTC imaging was performed with a multi-layer machine (Somatom Sensation® 16, Siemens, Erlangen, Germany) with high resolution spiral technique (mA 80, kV 120, SL 0.75mm, RI 0.5mm, FOV 160mm , voxel 0,5x0,5x0,75mm, WLS H70h). CBCT images were acquired with a cone beam computerized tomograph (NewTom 3G®, Quantitative Radiology, Verona, Italy) with volumetric technique (mA 1-6, kV 110, SL 0.4 mm, detector field 9 ", voxel 0 , 29 x 0.29 x 0.4mm). The images were then evaluated in a blinded manner by two neuroradiologists in a quantitative and semi-quantitative manner: - Semi-quantitative analysis: evaluation of the visibility of nine anatomical structures on a five-point semi-quantitative scale (1 = excellent - 5 = not visible). The anatomical structures were then divided into "dental" (root, pulp chamber, dentin, cement-enamel junction, apical foramen) and "periodontal" (periodontal space, lamina dura, cortical and trabecular bone). - Quantitative analysis: double-blind measurement of the diameter and depth of bone defects on MR, MDCT and CBCT images. In the statistical evaluation of the collected data, the "student t" tests (for continuous variables), "chi-square" (for categorical data) and the weighted Kappa coefficient (for estimating the agreement between the two evaluators) were used ). Results. Overall, image quality was excellent with all three imaging techniques. The agreement between the two evaluators was good for MRI (weighted kappa 0.74 ± 0.04) and moderate for MDCT (weighted kappa 0.56 ± 0.05) and CBCT (weighted kappa 0.60 ± 0.04). In the semi-quantitative analysis between the "dental" structures, the best visibility was found for the dental roots, the pulp chamber and dentin, without a considerable difference between MRI and MDCT (mean score between 1.3 and 1.8 ± 0.6). The visibility of these structures was slightly lower on CBCT images (mean score between 1.8 and 2.4 ± 0.72; p <0.001 for the pulp chamber). Visibility of the apical foramen was equally moderate in both MRI, MDCT and CBCT (2.0 ± 0.7 versus 2.2 ± 0.7 versus 2.0 ± 0.6). The cemeno-enamel junction was the only structure with a better visualization in CBCT and MDCT compared to MRI (2.3-2.9 ± 1.2 versus 4.9 ± 0.2; p <0.001). All the structures of the "periodontal apparatus", such as the periodontal space, cortical and trabecular bone, are significantly better visible on MR images than MDCT or CBCT ones. The mean visibility scores are 1.4-2.2 ± 0.6 for MRI, while 2.7-4.2 ± 0.8 for MDCT and CBCT (p <0.001). In MRI the lamina dura is visualized with high accuracy, a thin structure that separates the periodontal space from the alveolar bone (1.5 ± 0.7); this structure is not visible in MDCT and only discontinuously in CBCT (mean score 4.9-5.0 ± 0.3; p <0.001). Measurement of bone defects was found to be very precise and equally accurate with all three imaging techniques. Imaging in healthy volunteers and initiation of a clinical study. An attempt was therefore made to transfer the developed protocol to humans with the same high-field MRI machine, starting with some healthy volunteers and then moving on, with the approval of the research protocol by the ethics committee, to the recruitment of patients in one prospective, non-randomized, single-center clinical study still in progress. Materials and methods. Poor applicability of the surface coil of the experimental studies to humans was found, the simultaneous use of a standard 12-channel brain coil and 4-channel neck coil (Head Matrix Coil, Neck Matrix Coil, Siemens, Erlangen , Germany). A T2 SPACE STIR sequence (TR / TE 3800/286; SL 0,6mm; FOV 230mm; voxel 0,6x0,6x0,6mm; duration of about 7 min) and a T1 SE sequence with signal saturation were developed. grease (TR / TE 700/8; SL 1,8 mm; DF 0%; FOV 210mm; voxel 0,8x0,7x1,8mm; duration of about 3 min). Patients recruited into the clinical study and undergoing high-field MRI dental examination present with periodontal disease, periapical lytic lesions, extensive lytic bone lesions, or a history of recent dental trauma, pulpotomy, or autologous dental transplant. Once a sufficient number of patients has been reached, the data relating to the size and characteristics of the MR signal of the various lesions will be analyzed by means of descriptive statistical techniques and, depending on the pathology, compared with conventional radiology findings, with clinical evolution. or with histological examination. They will then be analyzed with the "student t" test and the values of sensitivity, specificity and positive and negative predictive values will be calculated. Results. The patients recruited so far (n = 11; 7 men, 4 women, mean age 46 years) presented periodontal disease of one or more dental elements (n = 3), periapical lytic lesions (n = 2), extensive mandibular or maxillary osteolytic lesions in relationship of contiguity with one or more dental roots (n = 3), alterations of the portion of the gingiva most closely adhering to the dental cement (attached gingiva) (n = 1), a history of recent dental trauma (n = 1) and pulpotomy (n = 1). Although the image quality of the animal preparations of the experimental studies could not be achieved with the standard brain and neck coils, they were obtained with the T2 weighted SPACE STIR sequence and the T1 weighted SE FS sequence before and after the administration of the contrast medium. acquisitions with excellent spatial and contrast resolution. In all the patients studied so far it was possible to detect the pathology under examination. The presence of endo-oral metallic material, as a result of previous endodontic treatments, only limited the quality of the images. Discussion. Experimental studies on animal models and the data collected so far in the prospective clinical study have highlighted the technical feasibility and potential of dental MR imaging. Dental-MRI seems to be an important complementary imaging technique especially in those patients with pathologies of the soft tissues supporting the teeth, such as the periodontal space, the alveolar-dental ligament and the gingiva. It is certainly necessary to recruit a greater number of patients in the clinical study to evaluate the effective usefulness of MRI in various dental pathologies. Furthermore, the development of a dedicated surface coil with high spatial resolution would be very interesting and certainly advantageous for the quality of the images and for the spatial resolution on humans. II) High-field magnetic resonance perfusion studies in patients with a history of oral cancer. Introduction. Neoplastic diseases of the oral cavity, pharynx and larynx currently account for approximately 4% of newly diagnosed cancers in men and 2% in women in the United States. More than 90% of oral cancers are squamous cell carcinomas, which arise on the lining mucosa. With the improvement of radiotherapy and chemotherapy treatments, in recent decades there has been an increasing use of less destructive surgical techniques and a notable improvement in life expectancy and average survival associated with these pathologies. These neoplasms present a high risk of local recurrence, while distant haematogenous metastasis is rarer. In the follow-up of these patients, a very important diagnostic problem is to distinguish between reparative / scarring phenomena and local relapses. In fact, in most cases, these are patients who have undergone multiple surgeries and high-dose local-regional radiotherapy treatments, in which the subversion of the natural anatomical organization and the marked local-regional inflammatory and reparative phenomena often make multiple biopsy samples necessary to exclude the presence of neoplastic tissue. Starting from the assumption that the tumor tissues present a vascularization different from the inflammatory and fibrous / scar tissue due to intratumoral neoangiogenesis phenomena and based on the application of MRI perfusion techniques, now used almost routinely in the diagnosis of neoplastic pathologies of other organs, such as p . ex. breast, we want to evaluate whether the calculation of perfusion curves on dubious findings of the oral cavity, the buccal floor and the oropharynx can be of help in the differential diagnosis between reparative phenomena and tumor recurrence and in the definition of tumor margins. Materials and methods. With the approval of the research protocol by the ethics committee, a prospective, single-center, non-randomized, still ongoing clinical study was initiated, in which patients with a current or previous history of oropharynx, oral cavity or of the buccal floor undergo standard MRI examination of the head and neck region and dynamic perfusion imaging in the same session. So far 29 patients have been recruited (18 men, 11 women; mean age of 63 ± 14 years). Standard and perfusion MR imaging was performed with a high-field MRI machine (3T, Tim Trio, Siemens, Erlangen, Germany) simultaneously using a standard 12-channel brain and 4-channel neck coil (Head Matrix Coil, Neck Matrix Coil, Siemens, Erlangen, Germany). A T1 FLASH 3D sequence was used for perfusion imaging (TR / TE 5.9 / 1.84; SL 3 mm; DF 20%; FOV 220 mm; voxel 1.1 x 1.1 x 3 mm) . The sequence, acquired during the administration of paramagnetic contrast agent by the iv route. (0.08 ml / kg body weight of a 1.0 mmol / ml gadobutrol solution, administered via an infusion pump at a constant flow of 3.5 ml / sec followed by infusion at the same flow of 20 ml of NaCl 0 , 9%), consists of 38 acquisitions of 7.8 sec each. With the Siemens "mean curve" software, signal intensity over time curves (I (t)) have been obtained. These curves were subsequently normalized on the basis of the initial intensity value and then analyzed. After subdividing the patients according to the presence of neoplasm or scar tissue, mean curves were calculated and the morphology of the curves compared, the maximum signal intensity value reached at the end of the rapid wash-in phase (Peak max = Pmax) , the time between the start of the wash-in and the achievement of Pmax (Time to peak = TTP) and the slope of the curve in the rapid washin phase (ratio Pmax / TTP). Statistical significance was assessed using the student's "t" test. Results. Of the 29 patients recruited so far, 14 had tumor tissue and 15 had breakdown / scar tissue. Curves I (t) show different morphologies in the two groups. Comparing the mean values of Pmax and TTP, statistically significant differences were obtained for both: tumor tissue showed higher Pmax and lower TTP values (tumor Pmax = 1.94 ± 0.83 versus scar Pmax = 0.79 ± 0 , 55; p <0.001 - TTP tumor = 21.73 ± 18.4sec versus TTP scar = 94.12 ± 74.73sec; p = 0.0015). The analysis of the mean Pmax / TTP ratio also showed statistically significant differences (Peak max / TTP tumor = 0.14 ± 0.11 versus Peak max / TTP scar = 0.02 ± 0.02; p <0.001). Discussion. The preliminary data collected so far in our clinical study show the usefulness of perfusion MRI in the diagnosis and follow-up of patients with squamous cell carcinomas of the oropharynx, oral cavity and buccal floor. Perfusion MRI appears to be of particular help in differentiating tumor tissue from fibrous-scar tissue following multiple treatments and in defining the margins of the neoplasm with greater certainty. The analysis of perfusion data by means of the calculation of I (t) curves is simple and easily applicable in daily clinical practice. The data obtained must certainly be confirmed by increasing the number of patients studied and evaluating the actual repeatability of the measurements in the follow-up.
) Imaging in Risonanza Magnetica ad alto campo dell'apparato dentario Introduzione: Nella pratica clinica l'imaging delle patologie dell’apparato dentario viene in genere eseguito per mezzo della radiologia tradizionale (tecnica ortopantomografica o radiografica endorale) (RX), della MDCT (multi-detector CT) o della CBCT (cone-bean CT). Tali tecniche sono però limitate nello studio dei tessuti molli, quali lo spazio parodontale, la gengiva, la polpa dentaria, permettendo solo tardivamente sia la diagnosi delle patologie di tali tessuti sia l'identificazione di fenomeni di riparazione tissutale in seguito a terapia. La Risonanza Magnetica (RM) potrebbe rappresentare, grazie alla sua eccellente visualizzazione dei tessuti molli, una possibile alternativa o comunque un utile mezzo di completamento diagnostico in pazienti affetti da alterazioni di tali tessuti. Alcuni lavori scientifici hanno infatti messo in evidenza il potenziale ruolo della RM nel rilevare molto più precocemente fenomeni di riparazione tissutale in seguito a terapia o essere utile nel guidare l'iter terapeutico in tali patologie, permettendo di selezionare quei pazienti con una maggiore probabilità di recupero funzionale o di rigenerazione tissutale in risposta alle diverse terapie. Particolarmente interessante per le sue implicazioni cliniche e terapeutiche la RM risulterebbe nei: - Pazienti con lesioni paro-endodontali: la patologia parodontale è tra le più diffuse infiammazioni croniche dell'uomo. Si tratta di un processo infiammatorio che in genere interessa inizialmente la gengiva, per poi estendersi nello spazio parodontale, causando riassorbimento dell'osso alveolare e formazione delle cosiddette "tasche radicolari". Un problema diagnostico e terapeutico importante si presenta nei pazienti con lesioni paro-endodontali, in cui l'infiammazione è estesa sia nello spazio parodontale sia all'interno delle radici dentarie; clinicamente non è possibile distinguere se il focus fosse primariamente endodontale o parodontale. Nella pratica clinica si procede con una terapia endocanalare valutandone l'efficacia sulla base della rigenerazione dell'osso alveolare, identificabile in RX a 5-6 mesi dal trattamento, secondo l'età del paziente. Si preferisce iniziare con la terapia endodontica, perché il courettage parodontale, nell'eliminare il materiale infiammatorio, andrebbe anche a distruggere molti elementi cellulari con potenziale di rigenerazione (fibroblasti); al courettage si procede poi in quei pazienti "non responder", essendo evidentemente il focus parodontale. Essendo la RM molto sensibile nell'identificazione di fenomeni edematosi/infiammatori dei tessuti molli (iperintensità di segnale in T2 e potenziamento dopo la somministrazione di mezzo di contrasto paramagnetico ev.), potrebbe evidenziare più precocemente fenomeni riparativi a livello parodontale in seguito alla terapia endocanalare. Si riuscirebbe così da un lato ad identificare prima i pazienti "non responder", che potrebbero essere sottoposti più precocemente e quindi con maggior probabilità di successo al trattamento parodontale, dall'altro i pazienti "responder", in cui il courettage va assolutamente evitato. Ovviamente ottimale sarebbe se la RM riuscisse a distinguere fin dall'inizio se il focus è dentario o parodontale. - Pazienti con lesioni ossee litiche periapicali: i granulomi e le cisti periapicali non sono distinguibili nelle tecniche radiografiche o di TC, presentandosi entrambi come lesioni litiche dell'osso alveolare, ben circoscritte, in prossimità dell'apice radicolare. La diagnosi differenziale è importante, perché nel primo caso la terapia è endodontica, mentre nel secondo bisogna procedere alla resezione della radice. Anche in questo caso si procede ex adjuvantibus, osservando la risposta alla terapia endocanalare. La RM potrebbe potenzialmente far propendere verso una di queste due entità patologiche sulla base dell'intensità di segnale in T1 e in T2 e del comportamento dopo la somministrazione di mezzo di contrasto, permettendo di selezionare quei pazienti con una maggiore probabilità di restitutio ad integrum dell'osso alveolare con la terapia endocanalare. - Pazienti con storia di recente trauma dentario o di trapianto dentario autologo: nella pratica clinica è difficile stimare il potenziale di recupero funzionale di un elemento dentario traumatizzato o trapiantato, dipendendo dalla vascolarizzazione o rivascolarizzazione della radice. In genere si preferisce un atteggiamento osservazionale, rischiando però, in caso di mancata perfusione, l'anchilosi o il riassorbimento della radice e quindi l'infezione. Andando a valutare, in base al potenziamento dopo la somministrazione di mezzo di contrasto ev., l'irrorazione delle radici del dente traumatizzato o trapiantato, la RM potrebbe permettere la selezione di quei pazienti con una maggiore probabilità di recupero funzionale. Lo scopo del nostro studio è dunque quello di valutare l'applicabilità della RM nell'imaging dei denti, di confrontarne le immagini con metodiche di MDCT e di CBCT e di valutarne gli effettivi vantaggi nell'imaging dentario. Studi sperimentali preliminari su modello animale. Inizialmente sono stati svolti studi sperimentali preliminari su preparati di mandibola suina (n = 4) sia per l'ottimizzazione di sequenze dedicate sia per valutare l'effettiva capacità della RM di visualizzare le diverse strutture anatomiche dell'apparato dentario [1] e per confrontare la qualità delle immagini con acquisizioni MDCT e CBCT [2]. Materiali e metodi. Al fine di ottenere una misura oggettiva della qualità delle immagini di RM, MDCT e CBCT nei diversi preparati mandibolari sono stati creati con trapano dentario dei difetti circolari di dimensioni definite (diametro 0,22-0,28cm; profondità 0,5-1cm) e riempiti con gel di clorexidina di gluconato all'1%. L'imaging di RM è stato eseguito con un macchinario ad alto campo (3T, Tim Trio, Siemens, Erlangen, Germania) utilizzando una bobina di superficie a 8 canali (Multifunction coil-CPC, NORAS, Höchberg, Germania). Sono state quindi messe a punto una sequenza 3D-T2-TSE (TR/TE 750/123; SL 0.6mm; DF 50%; FOV 120mm) e una sequenza T1-SE (TR/TE 680/13; SL 2mm; DF 0%; FOV 105mm) con elevata risoluzione spaziale (voxel 0.2 x 0.2 x 0.6 mm nella sequenza T2 pesata e 0.2 x 0.2 x 2 mm in quella T1 pesata) e ottimizzazione del contrasto tissutale, entrambe orientate trasversalmente. L'imaging MDTC è stato eseguito con un macchinario multi-strato (Somatom Sensation® 16, Siemens, Erlangen, Germania) con tecnica spirale ad alta risoluzione (mA 80, kV 120, SL 0,75mm, RI 0,5mm, FOV 160mm, voxel 0,5x0,5x0,75mm, WLS H70h). Le immagini CBCT sono state acquisite con un tomografo computerizzato a fascio conico (NewTom 3G®, Quantitative Radiology, Verona, Italia) con tecnica volumetrica (mA 1-6, kV 110, SL 0,4 mm, detector field 9", voxel 0,29 x 0,29 x 0,4mm). Le immagini sono state quindi valutate in cieco da due neuroradiologi in modo quantitativo e semiquantitativo: - Analisi semi-quantitativa: valutazione della visibilità di nove strutture anatomiche su una scala semi-quantitativa a cinque punti (1 = eccellente – 5 = non visibile). Le strutture anatomiche sono state quindi suddivise in "dentarie" (radice, camera pulpare, dentina, giunzione cemento-smalto, forame apicale) e "paradontali" (spazio paradontale, lamina dura, osso corticale e trabecolare). - Analisi quantitativa: misurazione in doppio cieco del diametro e della profondità dei difetti ossei sulle immagini RM, MDCT e CBCT. Nella valutazione statistica dei dati raccolti sono stati utilizzati i test "t di student" (per le variabili continue), "chi-quadrato" (per i dati categoriali) e il coefficiente Kappa pesato (per la stima dell'accordo tra i due valutatori). Risultati. Nell'insieme la qualità delle immagini è risultata eccellente con tutte e tre le tecniche d'imaging. L'accordo tra i due valutatori è risultato buono per la RM (weighted kappa 0,74 ± 0,04) e moderato per la MDCT (weighted kappa 0,56 ± 0,05) e la CBCT (weighted kappa 0,60 ± 0,04). Nell'analisi semi-quantitativa tra le strutture "dentarie" la migliore visibilità è stata riscontrata per le radici dentarie, la camera pulpare e la dentina, senza una differenza considerevole tra RM e MDCT (score medio tra 1,3 e 1,8 ± 0,6). La visibilità di tali strutture è risultata leggermente più bassa sulle immagini di CBCT (score medio tra 1,8 e 2,4 ± 0,72; p <0,001 per la camera pulpare). La visibilità del forame apicale è stata ugualmente moderata sia in RM, che in MDCT e in CBCT (2,0 ± 0,7 versus 2,2 ± 0,7 versus 2,0 ± 0,6). La giunzione cemeno-smalto è risultata l’unica struttura con una migliore visualizzazione in CBCT e MDCT rispetto alla RM (2,3-2,9 ± 1,2 versus 4,9 ± 0,2; p <0,001). Tutte le strutture dell'"apparato paradontale", quali lo spazio paradontale, l'osso corticale e trabecolare, sono significativamente meglio visualizzabili sulle immagini RM rispetto a quelle MDCT o CBCT. Gli scores medi di visibilità sono per la RM 1,4-2,2 ± 0,6, mentre per la MDCT e la CBCT 2,7-4,2 ± 0,8 (p <0,001). In RM è visualizzata con elevata accuratezza la lamina dura, una sottile struttura che separa lo spazio parodontale dall'osso alveolare (1,5 ± 0,7); tale struttura non è visibile in MDCT e solo discontinuamente in CBCT (score medio 4,9-5,0 ± 0,3; p <0,001). La misurazione dei difetti ossei è risultata molto precisa e ugualmente accurata con tutte e tre le tecniche d'imaging. Imaging in volontari sani ed inizio di uno studio clinico. Si è quindi tentato di trasferire sull'uomo con lo stesso macchinario RM ad alto campo il protocollo sviluppato, cominciando da alcuni volontari sani per poi passare, con l'approvazione del protocollo di ricerca da parte del comitato etico, al reclutamento di pazienti in uno studio clinico prospettico, non randomizzato, monocentrico, ancora in corso. Materiali e metodi. Riscontrata una scarsa applicabilità sull'uomo della bobina di superficie degli studi sperimentali, si è passati all'utilizzo simultaneo di una bobina standard dell'encefalo a 12 canali e del collo a 4 canali (Head Matrix Coil, Neck Matrix Coil, Siemens, Erlangen, Germania). Sono state sviluppate quindi una sequenza T2 SPACE STIR (TR/TE 3800/286; SL 0,6mm; FOV 230mm; voxel 0,6x0,6x0,6mm; durata di circa 7 min) e una sequenza T1 SE con saturazione del segnale del grasso (TR/TE 700/8; SL 1,8 mm; DF 0%; FOV 210mm; voxel 0,8x0,7x1,8mm; durata di circa 3 min). I pazienti reclutati nello studio clinico e sottoposti ad esame RM dentario ad alto campo presentano patologia parodontale, lesioni litiche periapicali, lesioni ossee litiche estese o storia di recente trauma dentario, pulpotomia o di trapianto dentario autologo. Una volta raggiunto un numero sufficiente di pazienti i dati relativi alle dimensioni e alle caratteristiche di segnale RM delle diverse lesioni verranno analizzati per mezzo di tecniche di statistica descrittiva e, a seconda della patologia, confrontati con reperti di radiologia convenzionale, con l'evoluzione clinica o con l'esame istologico. Verranno quindi analizzati con il test "t di student" e si calcoleranno i valori di sensibilità, specificità e i valori predittivi positivi e negativi. Risultati. I pazienti finora reclutati (n = 11; 7 uomini, 4 donne, età media 46 anni) presentavano una parodontopatia di uno o più elementi dentari (n = 3), lesioni litiche periapicali (n = 2), estese lesioni osteolitiche mandibolari o mascellari in rapporto di contiguità con una o più radici dentarie (n = 3), alterazioni della porzione della gengiva più strettamente aderente al cemento dentario (attached gingiva) (n = 1), una storia di recente trauma dentario (n = 1) e di pulpotomia (n = 1). Pur non riuscendo a raggiungere con le bobine standard dell'encefalo e del collo la qualità delle immagini dei preparati animali degli studi sperimentali, si sono ottenute con la sequenza T2 pesata SPACE STIR e la sequenza T1 pesata SE FS prima e dopo la somministrazione del mdc acquisizioni con un'ottima risoluzione spaziale e di contrasto. In tutti i pazienti finora studiati è stato possibile rilevare la patologia in esame. La presenza di materiale metallico endo-orale, in esito a precedenti trattamenti endodontici, ha limitato solo esiguamente la qualità delle immagini. Discussione. Gli studi sperimentali su modello animale e i dati finora raccolti nello studio clinico prospettico hanno reso evidente la fattibilità tecnica e la potenzialità dell'imaging dentario RM. La Dental-RM sembra poter rappresentare un'importante tecnica d'imaging complementare soprattutto in quei pazienti con patologie dei tessuti molli di sostegno dei denti, quali lo spazio parodontale, il legamento alveolo-dentale e la gengiva. E' sicuramente necessario il reclutamento di un maggior numero di pazienti nello studio clinico per valutare l'effettiva utilità della RM nelle diverse patologie dentarie. Inoltre molto interessante e di sicuro vantaggio per la qualità delle immagini e per la risoluzione spaziale sull'uomo risulterebbe lo sviluppo di una bobina di superficie dedicata, ad elevata risoluzione spaziale. II) Studi di perfusione in Risonanza Magnetica ad alto campo in pazienti con storia di neoplasia del cavo orale Introduzione. Le patologie neoplastiche del cavo orale, del faringe e della laringe rappresentano attualmente negli Stati Uniti circa il 4% dei tumori di nuova diagnosi negli uomini e il 2% nelle donne. Più del 90% dei tumori del cavo orale sono carcinomi squamocellulari, che insorgono sulle mucose di rivestimento. Con il miglioramento dei trattamenti radioterapici e chemioterapici, si è osservato negli ultimi decenni un ricorso sempre maggiore a tecniche chirurgiche meno distruttive e un notevole miglioramento dell'aspettativa di vita e della sopravvivenza media associate a queste patologie. Tali neoplasie presentano un elevato rischio di recidiva locale, mentre la metastatizzazione ematogena a distanza è più rara. Nel follow-up di tali pazienti un problema diagnostico molto rilevante, è distinguere tra fenomeni riparativi/cicatriziali e recidive locali. Si tratta infatti nella maggior parte dei casi di pazienti sottoposti a multipli interventi chirurgici e a trattamenti radioterapici loco-regionali ad alte dosi, in cui il sovvertimento della naturale organizzazione anatomica e gli spiccati fenomeni infiammatori e riparativi loco-regionali rendono spesso necessari prelievi bioptici multipli per escludere la presenza di tessuto neoplastico. Partendo dal presupposto che i tessuti tumorali presentano per fenomeni di neoangiogenesi intratumorale una vascolarizzazione diversa dal tessuto infiammatorio e fibroso/cicatriziale e basandosi sull’applicazione delle tecniche di RM di perfusione, utilizzate ormai quasi routinariamente nella diagnosi di patologie neoplastiche di altri organi, quali p. es. la mammella, vogliamo valutare se il calcolo di curve di perfusione su reperti dubbi del cavo orale, del pavimento buccale e dell'orofaringe possa essere di ausilio nella diagnosi differenziale tra fenomeni riparativi e recidiva tumorale e nella definizione dei margini tumorali. Materiali e metodi. Con l'approvazione del protocollo di ricerca da parte del comitato etico si è dato inizio ad uno studio clinico prospettico, monocentrico, non randomizzato, ancora in corso, in cui pazienti con storia attuale o pregressa di neoplasia dell'orofaringe, del cavo orale o del pavimento buccale vengono sottoposti nella stessa seduta ad esame RM standard della regione testa-collo e ad imaging dinamico di perfusione. Finora sono stati reclutati 29 pazienti (18 uomini, 11 donne; età media di 63 ± 14 anni). L'imaging RM standard e di perfusione sono stati eseguiti con un macchinario RM ad alto campo (3T, Tim Trio, Siemens, Erlangen, Germania) utilizzando simultaneamente una bobina standard dell’encefalo a 12 canali e del collo a 4 canali (Head Matrix Coil, Neck Matrix Coil, Siemens, Erlangen, Germania). Per l'imaging di perfusione è stata utilizzata una sequenza T1 FLASH 3D (TR/TE 5,9/1,84; SL 3 mm; DF 20%; FOV 220 mm; voxel 1,1 x 1,1 x 3 mm). La sequenza, acquisita durante la somministrazione di agente di contrasto paramagnetico per via ev. (0,08 ml/kg corporeo di una soluzione di gadobutrolo 1,0 mmol/ml, somministrata tramite una pompa ad infusione ad un flusso costante di 3,5 ml/sec seguita dall'infusione allo stesso flusso di 20 ml di NaCl 0,9%), consiste di 38 acquisizioni di 7,8 sec ciascuna. Con il software "mean curve" della Siemens si sono ottenute curve intensità di segnale sul tempo (I(t)). Tali curve sono state successivamente normalizzate in base al valore di intensità iniziale e quindi analizzate. Suddivisi i pazienti in base alla presenza di neoplasia o di tessuto cicatriziale, sono state calcolate curve medie e confrontati la morfologia della curve, il valore d'intensità di segnale massimo raggiunto alla fine della fase di rapido wash-in (Peak max = Pmax), il tempo che intercorre tra l'inizio del wash-in e il raggiungimento del Pmax (Time to peak = TTP) e la pendenza della curva nella fase di rapido washin (rapporto Pmax/TTP). La significatività statistica è stata valutata utilizzando il test "t di student". Risultati. Dei 29 pazienti finora reclutati 14 presentavano tessuto tumorale e 15 tessuto ripartivo/cicatriziale. Le curve I(t) mostrano nei due gruppi morfologie differenti. Confrontando i valori medi di Pmax e TTP si sono ottenute per entrambi differenze statisticamente significative: il tessuto tumorale ha mostrato valori di Pmax superiori e di TTP inferiori (Pmax tumore = 1,94 ± 0,83 versus Pmax cicatrice = 0,79 ± 0,55; p <0,001 - TTP tumore = 21,73 ± 18,4sec versus TTP cicatrice = 94,12 ± 74,73sec; p = 0,0015). Anche l'analisi del rapporto medio Pmax/TTP ha mostrato differenze statisticamente significative (Peak max/TTP tumore = 0,14 ± 0,11 versus Peak max/TTP cicatrice = 0,02 ± 0,02; p <0,001). Discussione. I dati preliminari finora raccolti nel nostro studio clinico mostrano l'utilità della RM di perfusione alla diagnosi e nel follow-up di pazienti con carcinomi squamocellulari dell'orofaringe, del cavo orale e del pavimento buccale. La RM di perfusione sembra essere di particolare aiuto nel differenziare il tessuto tumorale dal tessuto fibroso-cicatriziale in esito ai multipli trattamenti e nel definire con maggiore certezza i margini della neoplasia. L'analisi dei dati di perfusione per mezzo del calcolo di curve I(t) risulta semplice e facilmente applicabile nella pratica clinica quotidiana. I dati ottenuti vanno sicuramente confermati aumentando il numero dei pazienti studiati e valutando l'effettiva ripetibilità delle misurazioni nel follow-up.
Identificazione di fenomeni di riparazione tissutale e di potenziale recupero funzionale nelle patologie dell'apparato dentario e del cavo orale in risonanza magnetica ad alto campo / Chiara Gaudino , 2012 May 29. 24. ciclo
Identificazione di fenomeni di riparazione tissutale e di potenziale recupero funzionale nelle patologie dell'apparato dentario e del cavo orale in risonanza magnetica ad alto campo
2012-05-29
Abstract
I) High-field Magnetic Resonance Imaging of the dental apparatus Introduction: in clinical practice, imaging of dental apparatus diseases is generally performed by means of traditional radiology (orthopantomography or intraoral radiography) (RX), MDCT (multi-detector CT) or CBCT (cone-bean CT). However, these techniques are limited in the study of soft tissues, such as the periodontal space, the gum, the dental pulp, allowing only late diagnosis of the pathologies of these tissues and the identification of tissue repair phenomena following therapy. Magnetic resonance imaging (MRI) could represent, thanks to its excellent visualization of soft tissues, a possible alternative or in any case a useful means of diagnostic completion in patients affected by alterations of these tissues. Some scientific works have in fact highlighted the potential role of MRI in detecting tissue repair phenomena much earlier after therapy or being useful in guiding the therapeutic process in such pathologies, allowing to select those patients with a greater probability of recovery. functional or tissue regeneration in response to different therapies. Particularly interesting for its clinical and therapeutic implications, MRI would result in: - Patients with periodontal lesions: periodontal pathology is one of the most common chronic inflammations in man. It is an inflammatory process that generally affects the gum initially, and then extends into the periodontal space, causing resorption of the alveolar bone and the formation of so-called "root pockets". An important diagnostic and therapeutic problem arises in patients with periodontal lesions, in which the inflammation is extended both in the periodontal space and inside the dental roots; clinically it is not possible to distinguish whether the focus was primarily endodontal or periodontal. In clinical practice, endocanal therapy is carried out evaluating its effectiveness on the basis of the regeneration of the alveolar bone, which can be identified in x-rays 5-6 months after treatment, according to the age of the patient. It is preferable to start with endodontic therapy, because periodontal courettage, in eliminating the inflammatory material, would also destroy many cellular elements with regeneration potential (fibroblasts); the courettage is then proceeded to in those "non-responders" patients, obviously being the periodontal focus. Since MRI is very sensitive in identifying edematous / inflammatory phenomena of soft tissues (hyperintensity of T2 signal and enhancement after administration of paramagnetic contrast medium), it could show more precociously reparative phenomena at the periodontal level following endocanal therapy . On the one hand, it would be possible to identify first the "non-responder" patients, who could be subjected earlier and therefore more likely to be successful in periodontal treatment, on the other hand the "responder" patients, in whom courettage must be absolutely avoided. Obviously it would be optimal if the MRI could distinguish from the beginning whether the focus is dental or periodontal. - Patients with periapical lytic bone lesions: granulomas and periapical cysts cannot be distinguished in radiographic or CT techniques, both appearing as lytic lesions of the alveolar bone, well circumscribed, near the root apex. The differential diagnosis is important, because in the first case the therapy is endodontic, while in the second case it is necessary to proceed with the resection of the root. Also in this case we proceed ex adjuvantibus, observing the response to endocanal therapy. MRI could potentially lead to one of these two pathological entities on the basis of signal intensity in T1 and T2 and behavior after administration of contrast medium, allowing to select those patients with a greater probability of restitutio ad integrum of the alveolar bone with endocanal therapy. - Patients with a history of recent dental trauma or autologous dental transplantation: in clinical practice it is difficult to estimate the functional recovery potential of a traumatized or transplanted dental element, depending on the vascularization or revascularization of the root. In general, an observational attitude is preferred, however, in the event of non-perfusion, there is the risk of ankylosis or root resorption and therefore infection. Going to evaluate, based on the strengthening after the administration of iv contrast medium, the spraying of the roots of the traumatized or transplanted tooth, MRI could allow the selection of those patients with a greater probability of functional recovery. The aim of our study is therefore to evaluate the applicability of MRI in dental imaging, to compare the images with MDCT and CBCT methods and to evaluate their effective advantages in dental imaging. Preliminary experimental studies on an animal model. Initially, preliminary experimental studies were carried out on porcine jaw preparations (n = 4) both for the optimization of dedicated sequences and to evaluate the effective ability of MRI to visualize the different anatomical structures of the dental apparatus [1] and to compare image quality with MDCT and CBCT acquisitions [2]. Materials and methods. In order to obtain an objective measure of the image quality of MR, MDCT and CBCT in the different mandibular preparations, circular defects of defined dimensions (diameter 0.22-0.28cm; depth 0.5-1cm) were created with a dental drill and filled with 1% gluconate chlorhexidine gel. MR imaging was performed with a high-field machine (3T, Tim Trio, Siemens, Erlangen, Germany) using an 8-channel surface coil (Multifunction coil-CPC, NORAS, Höchberg, Germany). A 3D-T2-TSE sequence (TR / TE 750/123; SL 0.6mm; DF 50%; FOV 120mm) and a T1-SE sequence (TR / TE 680/13; SL 2mm; DF were then developed) 0%; FOV 105mm) with high spatial resolution (voxel 0.2 x 0.2 x 0.6 mm in the T2-weighted sequence and 0.2 x 0.2 x 2 mm in the T1-weighted sequence) and optimization of tissue contrast, both oriented transversely. MDTC imaging was performed with a multi-layer machine (Somatom Sensation® 16, Siemens, Erlangen, Germany) with high resolution spiral technique (mA 80, kV 120, SL 0.75mm, RI 0.5mm, FOV 160mm , voxel 0,5x0,5x0,75mm, WLS H70h). CBCT images were acquired with a cone beam computerized tomograph (NewTom 3G®, Quantitative Radiology, Verona, Italy) with volumetric technique (mA 1-6, kV 110, SL 0.4 mm, detector field 9 ", voxel 0 , 29 x 0.29 x 0.4mm). The images were then evaluated in a blinded manner by two neuroradiologists in a quantitative and semi-quantitative manner: - Semi-quantitative analysis: evaluation of the visibility of nine anatomical structures on a five-point semi-quantitative scale (1 = excellent - 5 = not visible). The anatomical structures were then divided into "dental" (root, pulp chamber, dentin, cement-enamel junction, apical foramen) and "periodontal" (periodontal space, lamina dura, cortical and trabecular bone). - Quantitative analysis: double-blind measurement of the diameter and depth of bone defects on MR, MDCT and CBCT images. In the statistical evaluation of the collected data, the "student t" tests (for continuous variables), "chi-square" (for categorical data) and the weighted Kappa coefficient (for estimating the agreement between the two evaluators) were used ). Results. Overall, image quality was excellent with all three imaging techniques. The agreement between the two evaluators was good for MRI (weighted kappa 0.74 ± 0.04) and moderate for MDCT (weighted kappa 0.56 ± 0.05) and CBCT (weighted kappa 0.60 ± 0.04). In the semi-quantitative analysis between the "dental" structures, the best visibility was found for the dental roots, the pulp chamber and dentin, without a considerable difference between MRI and MDCT (mean score between 1.3 and 1.8 ± 0.6). The visibility of these structures was slightly lower on CBCT images (mean score between 1.8 and 2.4 ± 0.72; p <0.001 for the pulp chamber). Visibility of the apical foramen was equally moderate in both MRI, MDCT and CBCT (2.0 ± 0.7 versus 2.2 ± 0.7 versus 2.0 ± 0.6). The cemeno-enamel junction was the only structure with a better visualization in CBCT and MDCT compared to MRI (2.3-2.9 ± 1.2 versus 4.9 ± 0.2; p <0.001). All the structures of the "periodontal apparatus", such as the periodontal space, cortical and trabecular bone, are significantly better visible on MR images than MDCT or CBCT ones. The mean visibility scores are 1.4-2.2 ± 0.6 for MRI, while 2.7-4.2 ± 0.8 for MDCT and CBCT (p <0.001). In MRI the lamina dura is visualized with high accuracy, a thin structure that separates the periodontal space from the alveolar bone (1.5 ± 0.7); this structure is not visible in MDCT and only discontinuously in CBCT (mean score 4.9-5.0 ± 0.3; p <0.001). Measurement of bone defects was found to be very precise and equally accurate with all three imaging techniques. Imaging in healthy volunteers and initiation of a clinical study. An attempt was therefore made to transfer the developed protocol to humans with the same high-field MRI machine, starting with some healthy volunteers and then moving on, with the approval of the research protocol by the ethics committee, to the recruitment of patients in one prospective, non-randomized, single-center clinical study still in progress. Materials and methods. Poor applicability of the surface coil of the experimental studies to humans was found, the simultaneous use of a standard 12-channel brain coil and 4-channel neck coil (Head Matrix Coil, Neck Matrix Coil, Siemens, Erlangen , Germany). A T2 SPACE STIR sequence (TR / TE 3800/286; SL 0,6mm; FOV 230mm; voxel 0,6x0,6x0,6mm; duration of about 7 min) and a T1 SE sequence with signal saturation were developed. grease (TR / TE 700/8; SL 1,8 mm; DF 0%; FOV 210mm; voxel 0,8x0,7x1,8mm; duration of about 3 min). Patients recruited into the clinical study and undergoing high-field MRI dental examination present with periodontal disease, periapical lytic lesions, extensive lytic bone lesions, or a history of recent dental trauma, pulpotomy, or autologous dental transplant. Once a sufficient number of patients has been reached, the data relating to the size and characteristics of the MR signal of the various lesions will be analyzed by means of descriptive statistical techniques and, depending on the pathology, compared with conventional radiology findings, with clinical evolution. or with histological examination. They will then be analyzed with the "student t" test and the values of sensitivity, specificity and positive and negative predictive values will be calculated. Results. The patients recruited so far (n = 11; 7 men, 4 women, mean age 46 years) presented periodontal disease of one or more dental elements (n = 3), periapical lytic lesions (n = 2), extensive mandibular or maxillary osteolytic lesions in relationship of contiguity with one or more dental roots (n = 3), alterations of the portion of the gingiva most closely adhering to the dental cement (attached gingiva) (n = 1), a history of recent dental trauma (n = 1) and pulpotomy (n = 1). Although the image quality of the animal preparations of the experimental studies could not be achieved with the standard brain and neck coils, they were obtained with the T2 weighted SPACE STIR sequence and the T1 weighted SE FS sequence before and after the administration of the contrast medium. acquisitions with excellent spatial and contrast resolution. In all the patients studied so far it was possible to detect the pathology under examination. The presence of endo-oral metallic material, as a result of previous endodontic treatments, only limited the quality of the images. Discussion. Experimental studies on animal models and the data collected so far in the prospective clinical study have highlighted the technical feasibility and potential of dental MR imaging. Dental-MRI seems to be an important complementary imaging technique especially in those patients with pathologies of the soft tissues supporting the teeth, such as the periodontal space, the alveolar-dental ligament and the gingiva. It is certainly necessary to recruit a greater number of patients in the clinical study to evaluate the effective usefulness of MRI in various dental pathologies. Furthermore, the development of a dedicated surface coil with high spatial resolution would be very interesting and certainly advantageous for the quality of the images and for the spatial resolution on humans. II) High-field magnetic resonance perfusion studies in patients with a history of oral cancer. Introduction. Neoplastic diseases of the oral cavity, pharynx and larynx currently account for approximately 4% of newly diagnosed cancers in men and 2% in women in the United States. More than 90% of oral cancers are squamous cell carcinomas, which arise on the lining mucosa. With the improvement of radiotherapy and chemotherapy treatments, in recent decades there has been an increasing use of less destructive surgical techniques and a notable improvement in life expectancy and average survival associated with these pathologies. These neoplasms present a high risk of local recurrence, while distant haematogenous metastasis is rarer. In the follow-up of these patients, a very important diagnostic problem is to distinguish between reparative / scarring phenomena and local relapses. In fact, in most cases, these are patients who have undergone multiple surgeries and high-dose local-regional radiotherapy treatments, in which the subversion of the natural anatomical organization and the marked local-regional inflammatory and reparative phenomena often make multiple biopsy samples necessary to exclude the presence of neoplastic tissue. Starting from the assumption that the tumor tissues present a vascularization different from the inflammatory and fibrous / scar tissue due to intratumoral neoangiogenesis phenomena and based on the application of MRI perfusion techniques, now used almost routinely in the diagnosis of neoplastic pathologies of other organs, such as p . ex. breast, we want to evaluate whether the calculation of perfusion curves on dubious findings of the oral cavity, the buccal floor and the oropharynx can be of help in the differential diagnosis between reparative phenomena and tumor recurrence and in the definition of tumor margins. Materials and methods. With the approval of the research protocol by the ethics committee, a prospective, single-center, non-randomized, still ongoing clinical study was initiated, in which patients with a current or previous history of oropharynx, oral cavity or of the buccal floor undergo standard MRI examination of the head and neck region and dynamic perfusion imaging in the same session. So far 29 patients have been recruited (18 men, 11 women; mean age of 63 ± 14 years). Standard and perfusion MR imaging was performed with a high-field MRI machine (3T, Tim Trio, Siemens, Erlangen, Germany) simultaneously using a standard 12-channel brain and 4-channel neck coil (Head Matrix Coil, Neck Matrix Coil, Siemens, Erlangen, Germany). A T1 FLASH 3D sequence was used for perfusion imaging (TR / TE 5.9 / 1.84; SL 3 mm; DF 20%; FOV 220 mm; voxel 1.1 x 1.1 x 3 mm) . The sequence, acquired during the administration of paramagnetic contrast agent by the iv route. (0.08 ml / kg body weight of a 1.0 mmol / ml gadobutrol solution, administered via an infusion pump at a constant flow of 3.5 ml / sec followed by infusion at the same flow of 20 ml of NaCl 0 , 9%), consists of 38 acquisitions of 7.8 sec each. With the Siemens "mean curve" software, signal intensity over time curves (I (t)) have been obtained. These curves were subsequently normalized on the basis of the initial intensity value and then analyzed. After subdividing the patients according to the presence of neoplasm or scar tissue, mean curves were calculated and the morphology of the curves compared, the maximum signal intensity value reached at the end of the rapid wash-in phase (Peak max = Pmax) , the time between the start of the wash-in and the achievement of Pmax (Time to peak = TTP) and the slope of the curve in the rapid washin phase (ratio Pmax / TTP). Statistical significance was assessed using the student's "t" test. Results. Of the 29 patients recruited so far, 14 had tumor tissue and 15 had breakdown / scar tissue. Curves I (t) show different morphologies in the two groups. Comparing the mean values of Pmax and TTP, statistically significant differences were obtained for both: tumor tissue showed higher Pmax and lower TTP values (tumor Pmax = 1.94 ± 0.83 versus scar Pmax = 0.79 ± 0 , 55; p <0.001 - TTP tumor = 21.73 ± 18.4sec versus TTP scar = 94.12 ± 74.73sec; p = 0.0015). The analysis of the mean Pmax / TTP ratio also showed statistically significant differences (Peak max / TTP tumor = 0.14 ± 0.11 versus Peak max / TTP scar = 0.02 ± 0.02; p <0.001). Discussion. The preliminary data collected so far in our clinical study show the usefulness of perfusion MRI in the diagnosis and follow-up of patients with squamous cell carcinomas of the oropharynx, oral cavity and buccal floor. Perfusion MRI appears to be of particular help in differentiating tumor tissue from fibrous-scar tissue following multiple treatments and in defining the margins of the neoplasm with greater certainty. The analysis of perfusion data by means of the calculation of I (t) curves is simple and easily applicable in daily clinical practice. The data obtained must certainly be confirmed by increasing the number of patients studied and evaluating the actual repeatability of the measurements in the follow-up.File | Dimensione | Formato | |
---|---|---|---|
DT_65_GaudinoChiara.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
Creative commons
Dimensione
4.62 MB
Formato
Adobe PDF
|
4.62 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.