Recent evolution in the field of data science has revealed the potential utility of machine learning (ML) applied to criminal justice. Hence, the literature focused on finding better techniques to predict criminal recidivism risk is rapidly flourishing. However, it is difficult to make a state of the art for the application of ML in recidivism prediction. In this systematic review, out of 79 studies from Scopus and PubMed online databases we selected, 12 studies that guarantee the replicability of the models across different datasets and their applicability to recidivism prediction. The different datasets and ML techniques used in each of the 12 studies have been compared using the two selected metrics. This study shows how each method applied achieves good performance, with an average score of 0.81 for ACC and 0.74 for AUC. This systematic review highlights key points that could allow criminal justice professionals to routinely exploit predictions of recidivism risk based on ML techniques. These include the presence of performance metrics, the use of transparent algorithms or explainable artificial intelligence (XAI) techniques, as well as the high quality of input data.

Machine Learning and Criminal Justice: A Systematic Review of Advanced Methodology for Recidivism Risk Prediction

De Micco F.
2022-01-01

Abstract

Recent evolution in the field of data science has revealed the potential utility of machine learning (ML) applied to criminal justice. Hence, the literature focused on finding better techniques to predict criminal recidivism risk is rapidly flourishing. However, it is difficult to make a state of the art for the application of ML in recidivism prediction. In this systematic review, out of 79 studies from Scopus and PubMed online databases we selected, 12 studies that guarantee the replicability of the models across different datasets and their applicability to recidivism prediction. The different datasets and ML techniques used in each of the 12 studies have been compared using the two selected metrics. This study shows how each method applied achieves good performance, with an average score of 0.81 for ACC and 0.74 for AUC. This systematic review highlights key points that could allow criminal justice professionals to routinely exploit predictions of recidivism risk based on ML techniques. These include the presence of performance metrics, the use of transparent algorithms or explainable artificial intelligence (XAI) techniques, as well as the high quality of input data.
artificial intelligence; crime prediction; explainable artificial intelligence; machine learning; recidivism; Artificial Intelligence; Criminal Law; Databases, Factual; Machine Learning; Recidivism
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/69543
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact