The pervasiveness of Artificial Intelligence approaches in effectively supporting the decision process in many applications has raised the need to explain their behaviour. In this context, we present the application and evaluation of three eXplainable Artificial Intelligence methods in a real-world multimodal task of anomaly detection on telematics data. We cope with the challenge of explaining Multivariate Time Series and of translating methods designed for images to this domain.

Explainable AI for Car Crash Detection using Multivariate Time Series

Sicilia R.;Cordelli E.;Soda P.
2021-01-01

Abstract

The pervasiveness of Artificial Intelligence approaches in effectively supporting the decision process in many applications has raised the need to explain their behaviour. In this context, we present the application and evaluation of three eXplainable Artificial Intelligence methods in a real-world multimodal task of anomaly detection on telematics data. We cope with the challenge of explaining Multivariate Time Series and of translating methods designed for images to this domain.
2021
978-1-6654-2119-5
Accidents; Artificial intelligence; Time series
File in questo prodotto:
File Dimensione Formato  
20.500.12610-74328.pdf

non disponibili

Tipologia: Versione Editoriale (PDF)
Licenza: Copyright dell'editore
Dimensione 1.82 MB
Formato Adobe PDF
1.82 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/74328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? ND
social impact