Several factors may prevent post-stroke subjects from participating in rehabilitation protocols, for example, geographical location of rehabilitation centres, socioeconomic status, economic burden and lack of logistics surrounding transportation. Early supported discharge from hospitals with continued rehabilitation at home represents a well-defined regimen of post-stroke treatment. Information-based technologies coupled with robotics have promoted the development of new technologies for telerehabilitation. In this article, the design and development of a modular architecture for delivering upper limb robotic telerehabilitation with the CBM-Motus, a planar unilateral robotic machine that allows performing state-of-the-art rehabilitation tasks, have been presented. The proposed architecture allows a therapist to set a therapy session on his or her side and send it to the patient's side with a standardized communication protocol; the user interacts with the robot that provides an adaptive assistance during the rehabilitation tasks. Patient's performance is evaluated by means of performance indicators, which are also used to update robot behaviour during assistance. The implementation of the architecture is described and a set of validation tests on seven healthy subjects are presented. Results show the reliability of the novel architecture and the capability to be easily tailored to the user's needs with the chosen robotic device.

A modular telerehabilitation architecture for upper limb robotic therapy

Zollo L;Vollero L;Iannello G;Guglielmelli E
2017-01-01

Abstract

Several factors may prevent post-stroke subjects from participating in rehabilitation protocols, for example, geographical location of rehabilitation centres, socioeconomic status, economic burden and lack of logistics surrounding transportation. Early supported discharge from hospitals with continued rehabilitation at home represents a well-defined regimen of post-stroke treatment. Information-based technologies coupled with robotics have promoted the development of new technologies for telerehabilitation. In this article, the design and development of a modular architecture for delivering upper limb robotic telerehabilitation with the CBM-Motus, a planar unilateral robotic machine that allows performing state-of-the-art rehabilitation tasks, have been presented. The proposed architecture allows a therapist to set a therapy session on his or her side and send it to the patient's side with a standardized communication protocol; the user interacts with the robot that provides an adaptive assistance during the rehabilitation tasks. Patient's performance is evaluated by means of performance indicators, which are also used to update robot behaviour during assistance. The implementation of the architecture is described and a set of validation tests on seven healthy subjects are presented. Results show the reliability of the novel architecture and the capability to be easily tailored to the user's needs with the chosen robotic device.
2017
Upper limb,; rehabilitation robotics,; stroke
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/4328
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact