In the last decades, there have been great efforts in the development of advanced polyarticulated prosthetic hands; in contrast, prosthetic wrists have drawn less interest. Nevertheless, increasing the dexterity of the wrist improves handling skills because the wrist allows the prepositioning of the hand before carrying out a task, avoiding the onset of unwanted trunk or shoulders compensatory movements and potential onset or exacerbation of articular injuries. This study presents a novel 2-degree-of-freedom prosthetic wrist module with active pronation/supination and passive elastic flexion/extension. This system is suitable to be included in hand prostheses to improve anthropomorphism and produce a more physiological motion. The first submodule within the socket is able to rotate a prosthetic hand and an external load of 3 kg at 2.6 rad/s. The second one can guarantee a range of motion of ±75° with a centering elastic torque (compliant mode) or it can keep firms grasps (fixed mode). Compliant mode is based on a Scotch-Yoke mechanism converting wrist flexion/extension into the linear motion of a crossbeam acting on compression springs, while fixed mode is achieved by means of a piston that can be engaged/disengaged. The whole module fits with anthropometry and the modular design ensures the proposed system can be used in a stand-alone way and adapted to different hand prostheses. This device is expected to favor a more physiological dexterity with respect to simpler fixed prostheses that can potentially induce harmful motion of body districts not naturally involved in the reaching and grasping tasks.

Design of a modular and compliant wrist module for upper limb prosthetics

Demofonti A.
;
Tagliamonte N. L.;Zollo L.
2023-01-01

Abstract

In the last decades, there have been great efforts in the development of advanced polyarticulated prosthetic hands; in contrast, prosthetic wrists have drawn less interest. Nevertheless, increasing the dexterity of the wrist improves handling skills because the wrist allows the prepositioning of the hand before carrying out a task, avoiding the onset of unwanted trunk or shoulders compensatory movements and potential onset or exacerbation of articular injuries. This study presents a novel 2-degree-of-freedom prosthetic wrist module with active pronation/supination and passive elastic flexion/extension. This system is suitable to be included in hand prostheses to improve anthropomorphism and produce a more physiological motion. The first submodule within the socket is able to rotate a prosthetic hand and an external load of 3 kg at 2.6 rad/s. The second one can guarantee a range of motion of ±75° with a centering elastic torque (compliant mode) or it can keep firms grasps (fixed mode). Compliant mode is based on a Scotch-Yoke mechanism converting wrist flexion/extension into the linear motion of a crossbeam acting on compression springs, while fixed mode is achieved by means of a piston that can be engaged/disengaged. The whole module fits with anthropometry and the modular design ensures the proposed system can be used in a stand-alone way and adapted to different hand prostheses. This device is expected to favor a more physiological dexterity with respect to simpler fixed prostheses that can potentially induce harmful motion of body districts not naturally involved in the reaching and grasping tasks.
2023
compliant joint
hand robotic prosthesis
wrist 2-DoFs mechanism
wrist prosthesis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/67343
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 12
social impact