This work proposes a Learning by Demonstration framework based on Dynamic Movement Primitives (DMPs) that could be effectively adopted to plan complex activities in robotics such as the ones to be performed in agricultural domains and avoid orientation discontinuity during motion learning. The approach resorts to Lie theory and integrates into the DMP equations the exponential and logarithmic map, which converts any element of the Lie group (Formula presented.) into an element of the tangent space (Formula presented.) and vice versa. Moreover, it includes a dynamic parameterization for the tangent space elements to manage the discontinuity of the logarithmic map. The proposed approach was tested on the Tiago robot during the fulfillment of four agricultural activities, such as digging, seeding, irrigation and harvesting. The obtained results were compared to the one achieved by using the original formulation of the DMPs and demonstrated the high capability of the proposed method to manage orientation discontinuity (the success rate was 100 % for all the tested poses).

Robot Learning by Demonstration with Dynamic Parameterization of the Orientation: An Application to Agricultural Activities

Lauretti C.
;
Tamantini C.;Zollo L.
2023-01-01

Abstract

This work proposes a Learning by Demonstration framework based on Dynamic Movement Primitives (DMPs) that could be effectively adopted to plan complex activities in robotics such as the ones to be performed in agricultural domains and avoid orientation discontinuity during motion learning. The approach resorts to Lie theory and integrates into the DMP equations the exponential and logarithmic map, which converts any element of the Lie group (Formula presented.) into an element of the tangent space (Formula presented.) and vice versa. Moreover, it includes a dynamic parameterization for the tangent space elements to manage the discontinuity of the logarithmic map. The proposed approach was tested on the Tiago robot during the fulfillment of four agricultural activities, such as digging, seeding, irrigation and harvesting. The obtained results were compared to the one achieved by using the original formulation of the DMPs and demonstrated the high capability of the proposed method to manage orientation discontinuity (the success rate was 100 % for all the tested poses).
2023
agricultural robotics; dynamic-motion primitives; human–robot collaboration; robot learning; robot-motion planning
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.12610/77672
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact