This paper describes an intensity-modulated fiber optic sensor for strain measurements. The sensing element is a polydimetilsiloxane (PDMS) micro-diffraction grating, 15 mm long, 2 mm thick, with channels 150 μm wide, spaced apart 200 μm. The working principle of the sensor can be summarized as follows: when the sensing element is strained perpendicularly to the grating plane, light passing through the grating undergoes a modulation caused by the phenomenon of diffraction. Since the grating is interposed between a laser source and a fiber optic, the coupled radiation intensity between these two optical elements can be considered as an indirect measure of strain. A static calibration of the measuring system has been performed, showing that the device, with measuring range of about 0.04, is capable to discriminate strain of 0.005 and it presents a sensitivity increase with strain in the whole range of measurements
A micromachined intensity-modulated fiber optic sensor for strain measurements: Working principle and static calibration
Schena E;Accoto D;Guglielmelli E;Silvestri S
2012-01-01
Abstract
This paper describes an intensity-modulated fiber optic sensor for strain measurements. The sensing element is a polydimetilsiloxane (PDMS) micro-diffraction grating, 15 mm long, 2 mm thick, with channels 150 μm wide, spaced apart 200 μm. The working principle of the sensor can be summarized as follows: when the sensing element is strained perpendicularly to the grating plane, light passing through the grating undergoes a modulation caused by the phenomenon of diffraction. Since the grating is interposed between a laser source and a fiber optic, the coupled radiation intensity between these two optical elements can be considered as an indirect measure of strain. A static calibration of the measuring system has been performed, showing that the device, with measuring range of about 0.04, is capable to discriminate strain of 0.005 and it presents a sensitivity increase with strain in the whole range of measurementsI documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.