This paper wants to stress the importance of human movement monitoring to prevent musculoskeletal disorders by proposing the WGD—Working Gesture Dataset, a publicly available dataset of assembly line working gestures that aims to be used for worker’s kinematic analysis. It contains kinematic data acquired from healthy subjects performing assembly line working activities using an optoelectronic motion capture system. The acquired data were used to extract quantitative indicators to assess how the working tasks were performed and to detect useful information to estimate the exposure to the factors that may contribute to the onset of musculoskeletal disorders. The obtained results demonstrate that the proposed indicators can be exploited to early detect incorrect gestures and postures and, consequently to prevent work-related disorders. The approach is general and independent on the adopted motion analysis system. It wants to provide indications for safely performing working activities. For example, the proposed WGD can also be used to evaluate the kinematics of workers in real working environments thanks to the adoption of unobtrusive measuring systems, such as wearable sensors through the extracted indicators and thresholds.
The WGD—A dataset of assembly line working gestures for ergonomic analysis and work-related injuries prevention
Tamantini C.
;Cordella F.;Lauretti C.;Zollo L.
2021-01-01
Abstract
This paper wants to stress the importance of human movement monitoring to prevent musculoskeletal disorders by proposing the WGD—Working Gesture Dataset, a publicly available dataset of assembly line working gestures that aims to be used for worker’s kinematic analysis. It contains kinematic data acquired from healthy subjects performing assembly line working activities using an optoelectronic motion capture system. The acquired data were used to extract quantitative indicators to assess how the working tasks were performed and to detect useful information to estimate the exposure to the factors that may contribute to the onset of musculoskeletal disorders. The obtained results demonstrate that the proposed indicators can be exploited to early detect incorrect gestures and postures and, consequently to prevent work-related disorders. The approach is general and independent on the adopted motion analysis system. It wants to provide indications for safely performing working activities. For example, the proposed WGD can also be used to evaluate the kinematics of workers in real working environments thanks to the adoption of unobtrusive measuring systems, such as wearable sensors through the extracted indicators and thresholds.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.